a2 United States Patent

Tran et al.

US009141391B2

US 9,141,391 B2
*Sep. 22, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

DATA PROCESSING SYSTEM WITH
LATENCY TOLERANCE EXECUTION

Inventors: Thang M. Tran, Austin, TX (US); Trinh
Huy Nguyen, Round Rock, TX (US)

Assignee: Freescale Semiconductor, Inc., Austin,
TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 743 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/419,531

Filed: Mar. 14,2012

Prior Publication Data
US 2012/0303936 Al Nov. 29, 2012

Related U.S. Application Data

Continuation-in-part of application No. 13/116,325,
filed on May 26, 2011, now Pat. No. 8,904,150.

Int. Cl1.

GO6F 15/00 (2006.01)

GO6F 9/30 (2006.01)

GO6F 9/40 (2006.01)

GO6F 9/38 (2006.01)

U.S. CL

CPC GO6F 9/3824 (2013.01); GOGF 9/3826

(2013.01); GOGF 9/3836 (2013.01); GO6F
9/3838 (2013.01); GOGF 9/3851 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,699,537 A 12/1997 Sharangpani et al.
5,925,122 A 7/1999 Ohsawa
5,941,983 A * 8/1999 Guptaetal. 712/214
6,553,482 B1* 4/2003 Witt 712/216
6,931,641 Bl 8/2005 Davis et al.
8,365,015 Bl 1/2013 Yuet al.
2004/0064829 Al 4/2004 Pallister et al.
2004/0215632 Al 10/2004 Isip et al.
2004/0216101 Al 10/2004 Burky et al.
2006/0218124 Al 9/2006 Williamson et al.
2007/0028078 Al 2/2007 Harris et al.
2010/0250900 Al 9/2010 Brown et al.
OTHER PUBLICATIONS

Mukherjee et al. (Detailed Design and Evaluation of Redundant
Multithreading Alternatives, May 2002, pp. 99-110).*

Bai et al.; “A Dynamically Reconfigurable Mixed In-Order/Out-of-
Order Issue Queue for Power Aware Microprocessors”; IEEE Com-
puter Society Annual Symposium Proceedings, VLSI; Feb. 20-21,
2003; pp. 139-146, IEEE.

(Continued)

Primary Examiner — George Giroux

(57) ABSTRACT

In a processor having an instruction unit, a decode/issue unit,
and execution queues configured to provide instructions to
correspondingly different types execution units, a method
comprises maintaining a duplicate free list for the execution
queues. The duplicate free list includes a plurality of dupli-
cate dependent instruction indicators that indicate when a
duplicate instruction for a dependent instruction is stored in at
least one of the execution queues. One of the duplicate depen-
dent instruction indicators is assigned to an execution queue
for a dependent instruction. The dependent instruction is
executed only when the one of the duplicate dependent
instruction indicators is reset.

18 Claims, 12 Drawing Sheets

DUPLICATE FREELIST 203 e r e
g [MATI11111110000 o
LOCATION:15 ==+ 0 —
(426 430
42
0000000000001100] [+/4| 0000000000001010
ADDRF =—RC,RD 424 |418] ADDRF —RC,RD 428 (432
0000000000000001] [41°] 0000000000000001) | 422 0000000000000110
ADD RC = RA, RB 416| ADDRC = RA, RB ADD RF =RC, RD
408 420
LOAD RB=[.] 414] LOADRA=-[.] LOAD RD~=[.]
208 2104 219

US 9,141,391 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Raasch et al.; “A Scalable Instruction Queue Design Using Depen-
dence Chains”; Proceedings of the 29th Annual International Sym-
posium on Computer Architecture; 2002; pp. 318-329; IEEE Com-
puter Society.

Smotherman; “Fager Execution/Dual Path/Multiple Path”; http://
www.cs.clemson.edu/~mark/eagerhtml; Jul. 2010; 8 Pgs.; Clemson
School of Computing.

U.S. Appl. No. 13/036,251, filed Feb. 28, 2011.

U.S. Appl. No. 13/210,566, filed Aug. 16, 2011.

U.S. Appl. No. 13/212,420, filed Aug. 18, 2011.

U.S. Appl. No. 13/397,452, filed Feb. 15, 2012.

U.S. Appl. No. 13/116,325, Tran, Thang, “Microprocessor Systems
and Methods for Handling Instructions With Multiple Dependen-
cies”, filed May 26, 2011, Office Action—Notice of Allowance,
mailed Jun. 20, 2014.

* cited by examiner

US 9,141,391 B2

Sheet 1 of 12

Sep. 22, 2015

U.S. Patent

["DIA

801

STv3HdIYAd
43HLO

|

]
0Ll

b
AHOWIN

oo |
NWN | | 3HOVO

00
¥0SS300¥d

US 9,141,391 B2

Sheet 2 of 12

Sep. 22, 2015

U.S. Patent

¢ 'Ol o
— ! le
T4 _. avayHlL L_
R
LINN X3 °INI y3LIayy =
X31dNOD
grg | X31dMOO e X31dW09 N IEONEEON
LN X3 NEIT: N (a0 =
74 %,
LNNX3 3INaND
vz | ¥393IN 4393INI
e N |
| 0zz | i |
|| LNnXE YLV €300 |
A E HONVAg | Qvol |
AQY >
| VLV =] o]
_ 87z 0%z 1 23n3Nd _
I
| : 87 avo1 |
1 8 RYEIT: 02 _
[IRER NELETT(I! L 303N0 _
||||||| av0T |
INNX3 = _
AHIVOC 18/ yaLIgHY _.v 03n3N0 |
= - avo1 f= QvOT |
0£2 T4 [N 802° |
_ NETNREN |
.vON _\. |
0 dv3yHL e I“

1Snad | b5
31¥ordna
ETER
p (SRENOTHO I
NJAN3d3d ONY
(STLINN IS NOILOTRLSN
/300030 | QVI4HL
o Z
26 e
1934 | 4808
31vordna
INVNT
5@%&5 LINN
3430 ONV |
(STLINN NSS! NOILOTRLLEN
/300030 0 QVIHL
o Z
202 o5z
-2

US 9,141,391 B2

Sheet 3 of 12

Sep. 22, 2015

U.S. Patent

v "DIA

'13S S1 118 31v211dNA ON 41 43LNJ33X3 38 AINO
NV NOLLONYLSNI "3NIND ¥3HLONY 40 (S)L18 3L¥2I1dNd FHL H¥I 1D T1IM 3N3ND 40 WOLLOE LY NOILINYLSNI
31¥0I1dNA LSHI4 FHL L3S (S)L18 31¥II1dNA HLIM SININD FdILTNIN OL INIS TV SNOILONYLSNI :3LYI1dNa ©

'(S)118 3LVOITdNA ONAS JHL ¥V OL
AN3ND Y3HLONY WHO4 NOILONYLSNI AWANA HO4 LIVM - ONIONId () S3NIND NOILNOIXT HIHLO NI NOILONYLSNI
ONIAN3d ¥3H10 40 31vOITdNA INAS FHL ¥V3TO OL d3SN 38 TIIM ALVOIdNd INAS 3HL IN3ND 3HL

40 WOL108 3HL LV SI NOILONYLSNI SIHL NIHM - ANNNA (1) ONIONId 4O AWANNG 38 ¥IHLIF NVD 3LYIITdNA ONAS

"LI9 3LY0NdNa” SNLVLS FHL ¥v310 OL IN3ND HIHLONY WOYS
NOILONYLSNI FLIMM JHL WOYS LTINS SNLVLS 04 LIVM - 0Y3H (2) S3NIND H3HLO NI 3L¥OITdNd_SNLYLS
JHL ¥¥310 0L A3SN 38 TIIM ILNJIXT NIHM - FLRIM (1) FLIMM HO QYIH ¥IHLIF 38 NVD 3LYOINdNA SNLYLS e

AONIONIJE0 | 3Lvordng
118 SNLVLS MO SININO NOLLNDIXT LNIXT-HIA NI G3LSIXT SNOILONYLSNI FHL 40 S31dOD TTdILTNW SILYIINI TR SIHL | LOH-L
3Y9dNa amvA aNad3a| anva aN3d3d| arva
YNNG | sov1 | anad | Nos1| anva | 3aau | M 1sa | O30 QWA | og |ONIET) QWA | g
e 4
N o0

US 9,141,391 B2

Sheet 4 of 12

Sep. 22, 2015

U.S. Patent

¢ DId

40 OL LIYM TTIM NOILONYLSNI :ALIHIM YD o
119 AYYVD OL LRIM TIM NOLLONYLSNI :ALHM ™ VO o
'$3N3ND NOLLNOAXT YIHLO WOHL SLINSTY HO ONILIVM SINOILONYLSNI {118 1) ONIANId ™ INAS

- ‘SLIE ONION3d
HLOG SA33N LYHL NOILONYLSNI NV SI J43HL SSTINN ONIANId VO HLIM QINIGWOD 38 AVIA 119 SIHL 3n3N0
NOLLND3X3 ¥IHLO WO d3AHYMHO4 38 OL LINSTY ¥O HO ONILIVM ‘LNdNI 8O HLIM NOILONYLSNI :ONIONId HO

. ‘IN3N0 NOILNIAX3
H3HLO WOY4 03QHYMYO04 38 OL LI AHVO HO4 ONILIVM NIFAYEYD HLIM NOILONHLSNI -ONION3d VO e

"J10A0 X301 LX3N NI AQY3Y SI LYH1 Y1V
1INSTYH HO4 ONILIVM SI ANV LINN NOILNO3X3 FHOLS/AVOT OL LN3S N338 SYH NOILONYLSNI :ONIANTd LINSTY

:NOILNO3X3 NOILIANOD NO ONIAN3 SI NOILONHLSNI

aN3d

U.S. Patent Sep. 22, 2015 Sheet 5 of 12 US 9,141,391 B2

DUPLICATE FREE LIST 203
INSTRUCTION ISSUE
g [TITT11111110000-= ONT 505
LOCATION:15 ~ +++ 0 | —
4% (430
—— 412 '
[0000000000001100] || [0000000000001010)]
ADDRF —RC,RD 424 |418| ADDRF —RC,RD 428 43
[0000000000000001] i‘J,O, [0000000000000001 | 42, [0000000000000110]
ADD RC =—RA, RB 416 ADDRC =—RA, RB ADD RF =—RC, RD
408 420
LOAD RB=-|. 441 LOAD RA=-[.] LOAD RD=-1.]
208" 2107 2197
DUPLICATE FREE LIST 203
M111111111110110]
_____________ INSTRUCTION ISSUE
LUJUJJUJJIOOOO;’ UNIT 959
SEARCH FIRST 1M =
|
426 430
0000000000001000H- '0000000000001000
T00000000000 o [42] " ooooooonoono 1010
ADD RF =—RC,RD 418| ADDRF—RCRD M
424~1000000000000000 ﬂﬂ 428~10000000000000001 | *24
ADD RC =—RA, RB 416| ADD RC =—RA, RB 432
408) [0000000000000110
LOAD RB=-[.] 414 LOAD RA=-[.] ADD RF =——RC, RD
A A A Yy
208 210 212 INVALIDATE

U.S. Patent Sep. 22, 2015 Sheet 6 of 12 US 9,141,391 B2

CAPENDING ~ CAPENDING
VALIDBIT 500 POINTER 502

00000100
<C
(&)
DUPLICATE[TTTITTITi(i0T] | NSTRUCTION ISSUE

,,,,,,,,,,,,, UNIT
R 11111010010 —
YW |
28~ l 1 210 l 2
504 (510
—H 412
00000000 o5 12| B0 100000
ADDRF —RC, RO~ | (508 |418| NJULTIPLY DUMMY SYNC
00000000506 [oooopoga} §}41°) 512~oooto0q)| 2,
ADDCRC ——RA,RE || "[|416| APDRF-—RC,RD [5% (518 (520
498 | oogootoor516 [oooodoot] | *2%ooootoy] [00000000
LOAD RB~-.] 414| "]ADDCRC = RA, RB ADDE RG = RF, RE
: ! > TO COMPLEX QUEUES
MULTIPLE INVALIDATES N 1 CYCLE
CAPENDING CAPENDING
VALIDBIT500 POINTER 502
[0} 00000000}
f 0000450
DUPLICATE[TTTATTTTA11)1] | INSTRUGTIONISSUE
RO AT g1 =
203 ! |
28~ l 1 210 l 212
412
418]
504~{og000goa) - | e
ADDRF —RC,RD 508| |416 oting (520
00000700506 [oaooogoo} | 420 50000700 T 00000000
ADDC|RC =—RA, RB # ADDHIRG < RF, RE
]
Y
CLEAR CABIT

FIG. 9

U.S. Patent Sep. 22, 2015 Sheet 7 of 12 US 9,141,391 B2

CAPENDING ~ CA PENDING
VALIDBIT500 POINTER 502

[1] 00000100
<C
(&)
DUPLICATE[fTTTtTITT01011) | INSTRUGTIONISSUE
PREE LIST 1111111010010 202
203 1111111101 1
Kk |
208~ l 1 20 l 212
(600 (602
00100000 0000000 g |+~
MULTIPLY DUMMY'SYNC| | |418] 608 (610
00000100604 [ooooogocy | 1° | oot00000 00001000 | “44]
ADDC RC ~—RA, RB /1| 416 |MuLTIPLY DUMMY SYN, 614 (616 618
606 [|%|joooootoo62 [pooogoot] | [oncotos] [pooooooo
LOAD RB~-1.] 414] " ADDCRC <~ RA, RB ADDE RG ~ RF, RE

v
MULTIPLE INVALIDATES IN 1 CYCLE

FIG. 10

CAPENDING CA PENDING
VALIDBIT 500 POINTER 502

[0 [0000000lgy
f 000400

DUPLICATEfTTT1T7011)11 | NSTRUGTIONISSUE
R 11101111 —
203 [|
208~ l 1 20 l 22
412
(600 (602| |48
00100000 [oooooopol [°| 2 s
MULTIPLY DUMMY SYNC | |416 T 618
00000700604 [oooooapo) [4% 420 000700 T 00000000
ADDC|RC <—RA,RB ghg| 414 ADDHRG =-RF, RE
|
Y
CLEAR CABIT

FIG. 11

U.S. Patent Sep. 22, 2015 Sheet 8 of 12 US 9,141,391 B2

CAPENDING CA PENDING
VALIDBIT500 POINTER 502

[1] 00000100
<t
O
DUPLICATEFT7711171i011077 | INSTRUCTION ISSUE

_____________ ONIT
R 11111010010 -
'y |
28~ 1 210 l 212
702 704
' ——1—H 412
(0100000 (00000000 -2
LOADRG - RCRH] | ||418] 710 712
00000100706 [ooooodooy [+1°|potooood [poooraa | 4
ADDCRC ~RARB /| ||476] LOADRG - RC+RH] | 7%6 718 0
708] [14%|oooootoo~ 714 [ooogooq] | *%[ooncotos] [p0ooooa
LOAD RB~-.] 414] " ADDCRC =—RA,RB ADDE RG = RF, RE

Yy
MULTIPLE INVALIDATES IN 1 CYCLE

FIG. 12

CAPENDING ~ CAPENDING
VALIDBIT500 POINTER 502

[0} [00000000}g
1 0008400

1
DUPLICATEFTATTATTATTI{1] | MNoTRUGTIONISSUE
R ST 1111011011 0
A |
28~ 1 l 20 l 212
412
—Qz 704 475
00000000 2
dorooooy,.fooopoopa) || —
LAAD RG = [RC+RH] 48 0
408 420100000000 ¢
009001001706 [o00poapa] | 20 000100 T
ADDC|RC —RA,RB [70g| 414 ADDARG - RF, RE
]
SYNC_CLEAR FROM
CLEAR CABIT COMPLEX QUEUE

FIG. 13

U.S. Patent Sep. 22, 2015 Sheet 9 of 12 US 9,141,391 B2

1000 1002
N (sTART)~

1004
—J
RECEIVE FIRST VALID INST
1006
DECODE INST TODETERMINE [~
CARRY BIT REFERENCES

1014

WRITE CARRY

READ CARRY

BIT? BIT?
- 1016
2 OINTE(FJQAHE\ESN(E)/LNFE;ENDING
ASSIGN THE 1-HOT DUPLICATE 1018 VALID BIT SET?
ENTRY TO THIS INST, INCREASE THE i
POINTER, AND SET THE CA PENDING READ CA BIT FROM
POINTER AND PENDING VALID BIT CAREGISTER 1020
¢ ~
~ ASSIGN THE 1-HOT DUPLICATE
ISSUE INSTRUGTION WILL HAVE. ENTRY FROM CA PENDING POINTER
CAWRITE BIT SET IN EXECUTION TOTHE ISSUE INSTRUCTION
QUEUE
101?
ISSUE INSTRUCTION WILL HAVE
CA PENDING BIT SET IN EXECUTION
QUEUE
\
1004 1022
\

DISPATCH INST TO EXECUTION
QUEUE

FIG. 14

U.S. Patent Sep. 22, 2015 Sheet 10 of 12 US 9,141,391 B2
1102
INSTRUCTION SELECTEDBY [~
ARBITER FOR EXECUTION
CAWRITE BIT
SET?
1106 1112
S ' ' °

SENT 1-HOT CA DUPLICATE
FIELDS TO CLEAR DUPLICATE
BITS IN OTHER QUEUES

SEND 1-HOT CA DUPLICATE FIELDS
TO CLEAR THE DUPLICATE BIT IN
THE DUPLICATE FREE LIST AND CA
PENDING POINTER

CA DUPLICATE
BITS IN OTHER QUEUES
ARE CLEARED?

1110
.

BITS IN CA
PENDING POINTER ARE
CLEARED?

111
-~

6

INSTRUCTION IN OTHER QUEUES IS
NOW READY FOR EXECUTION AND
CLEAR CA_PENDING BITS

CLEAR CA POINTER PENDING
VALID BIT

U.S. Patent Sep. 22, 2015 Sheet 11 of 12 US 9,141,391 B2
1201
(START)y FIG. 16
RECENVE FRSTVALD INST |- 22 5120
AND DECODE FOR INST TYPE
DECODE INST TO DETERVINE |- ¢
INST OPERANDS
RENAVE OPERANDSTO |- 28
PHYSICAL REGISTERS
7 1240
CHECK FOR DEPENDENGIES 1 22 =
TH ALL QUEUES STALL INSTRUCTION
1210
NO
YES
MATCH YES
WITH SAME-TYPE WITH OTHER-TYPE
QUEUE? 1214
COUNT 1226
1216 MATCH > 1? N
S ASSIGN A DUPLICATE
SAVE INST TO THE 1220 BIT TO THE SYNC INST
DEPENDENT QUEUE = T !
L TRIPLICATE ALGORITHM SAVE SYNC INST AND
TO SAVE INSTRUCTION SYNC DUPLICATEBIT TO
B18 TO DEPENDENT QUEUES THE OTHER-TYPE QUEUE
SETTTOMN WITH DUPLICATE BITS 125
INDEPENDENT QUEUE | o |
NO _—ANOTHER MATCF
WITH OTHER-TYPE
1236 QUEUE?
‘\
SET SYNC PENDING BIT FOR
SAVED INST IN THE SAME-TYPE
QUEUE AND SET THE 1-HOT

SYNC DUPLICATE BIT

1234
O

/ 1238
END

USE DUPLICATE/TRIPLICATE ALGORITHM TO
SAVE SYNC INSTRUCTION TO DEPENDENT
QUEUES WITH DUPLICATE BITS AND ALSO

SET THE SYNC DUPLICATE BIT

U.S. Patent Sep. 22, 2015 Sheet 12 of 12 US 9,141,391 B2

1302

START

1306
BOTTOM c
ENTRY WITH A NON-ZERO SEND TO ARBITERS FOR

DUPLICATION OR
SYNC FIELD?

YES

SELECTION

INST WITH NO
1-HOT DUPLICATE
BIT %V
YES INST WITH
1-HOT SYNC DUPLICATE
BIT SET?
1310 1318
S Y ~
FOLLOW THE ALGORITHM FOR SEND 1-HOT SYNC DUPLICATE
CLEARING THE DUPLICATE BIT IN FIELDS TO CLEAR SYNG DUPLICATE
OTHER QUEUES INCLUDING BITS IN OTHER-TYPE QUEUES
COLLISION DETECTION
1312
~
INVALIDATE INST AND SHIFT
QUEUE ENTRIES DOWN BY 1
ALSO HAS A NON-ZERO

DUPLICATION OR

US 9,141,391 B2

1
DATA PROCESSING SYSTEM WITH
LATENCY TOLERANCE EXECUTION

RELATED APPLICATION

This application is a continuation-in-part of U.S. patent
application Ser. No. 13/116,325, filed on May 26, 2011,
entitled “Microprocessor Systems and Methods for Handling
Instructions with Multiple Dependencies,” naming Thang M.
Tran and Leick D. Robinson as inventors, and assigned to the
current assignee hereof, and which is hereby incorporated by
reference.

BACKGROUND

1. Field

This disclosure relates generally to data processing sys-
tems, and more specifically, to configuring a data processing
system for latency tolerance execution.

2. Related Art

One goal of ongoing processor development is to increase
the number of instructions per cycle (IPC). A computer pro-
cessor’s IPC is typically limited by stalling of instructions in
queues due to the inability to access memory when instruc-
tions are executed in-order. Issuing instructions out-of-order
can help to a certain degree, but eventually stalled instructions
will block other independent instructions from execution as
out-of-order dependent instructions fill up the queue.

Further, there is ever-increasing pressure to reduce power
consumption in computer processor devices to conserve
available power and extend the operating life of portable
devices between re-charging cycles.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are illustrated by
way of example and are not limited by the accompanying
figures, in which like references indicate similar elements.
Elements in the figures are illustrated for simplicity and clar-
ity and have not necessarily been drawn to scale.

FIG. 1is a diagram of an embodiment of a data processing
system in accordance with one embodiment of the present
disclosure.

FIG. 2 is a diagram of an embodiment of instruction han-
dling components that can be included in the processor of
FIG. 1 in accordance with one embodiment of the present
disclosure.

FIG. 3 is a diagram of an embodiment of an execution
queue entry in the processor of FIG. 2 in accordance with one
embodiment of the present disclosure.

FIGS. 4 and 5 are diagram ofthe 1-HOT DUPLICATE and
PEND fields of the execution queue entry of FIG. 3 in accor-
dance with one embodiment of the present disclosure.

FIGS. 6-13 are diagrams of examples of instruction han-
dling at various different points in time of the data processor
of FIG. 2.

FIG. 14 is a flow diagram of an embodiment of a method
for processing a first valid instruction in the data processor of
FIG. 2.

FIG. 15 is a flow diagram of an embodiment of a method
for processing an instruction selected for execution in the data
processor of FIG. 2.

FIG. 16 is a flow diagram of an embodiment of a method
for processing a first valid instruction in the data processor of
FIG. 2.

15

20

40

45

55

2

FIG. 17 is a flow diagram of an embodiment of a method
for processing a bottom entry of an instruction queue the data
processor of FIG. 2.

DETAILED DESCRIPTION

In one embodiment, a data processing system uses a num-
ber of execution queues in which decoded instructions are
issued to the queues and the instructions in each execution
queue are executed in order but the instructions from different
execution queues can execute out-of-order. If an instruction
has a dependency on another instruction already present in a
queue, the instruction is placed in the same queue. Further-
more, since the instruction may have 2 source operands, the
instruction can be sent to multiple queues. In this case, a set of
1-hot duplicate bits may be used to keep track of duplicate
instructions which reside in the queues. This methodology is
further described in U.S. patent application Ser. No. 13/116,
325. Also, for dependent instructions of different types, a
sync instruction can be sent to the queue holding the instruc-
tion on which it depends, while the actual instruction is sent to
the queue of the same type. In this case, in accordance with an
embodiment of the disclosure, a set of 1-hot sync duplicate
bits may also be used to keep track of any sync instructions.
Furthermore, there are instructions which update one or more
status bits, and instructions which source one or more status
bits. In one example, the status bit may be a carry bit. A set of
1-hot status duplicate bits, in accordance with an embodiment
of the disclosure, may also be used to keep track of the
updating and reading of a status bit. Furthermore, a duplicate
free list may include a set of duplicate dependent instruction
indicators to manage the 1-hot duplicate bits, 1-hot sync
duplicate bits, and the 1-hot status duplicate bits. Use of a set
of 1-hot bits and the duplicate free list to handle these addi-
tional situations will be further understood in reference to the
figures described below.

FIG. 1 shows a data processing system 100 in which
instruction decode and issue for latency tolerance execution
can be implemented according to some embodiments of the
disclosure. System 100 can be a superscalar microprocessor
architecture in which instructions are issued in order to execu-
tion queues and instructions in each execution queue are
executed in order but the instructions from different execution
queues can execute out-of-order. At comparable performance
points, system 100 has the lower power and area requirements
than systems that use only out-of-order execution queues.

Inthe illustrated embodiment, components in data process-
ing system 100 include processor 102, memory 104, input/
output (I/O) handlers/interfaces 106, and other peripheral
devices or modules 108 which are bi-directionally coupled to
bus 110 to allow communication between components. Pro-
cessor 102 includes Level 1 cache memory units 112 and
memory management unit (MMU) 114.

Bus 110 may communicate external to data processing
system 100. Alternate embodiments of the present disclosure
may use more, less, or different components and functional
blocks that those illustrated in FIG. 1. As some possible
examples, alternate embodiments of data processing system
100 may include a timer, a serial peripheral interface, a digi-
tal-to-analog converter, an analog-to digital converter, a
driver (e.g. a liquid crystal display driver), and/or a plurality
of types of memory.

MMU 114 is capable of providing various cache memory
and bus control signals as well as virtual address to physical
address translation. The virtual address is an address that is
generated by processor 102 and as viewed by code that is
executed by processor 102. The physical address is used to

US 9,141,391 B2

3

access the various higher-level memory banks such as a level-
one RAM memory. Once processor 102 requests data from
memory, MMU 114 can send a task identifier associated to
the data request (or more generally to the task that is being
executed by processor 102) to memory 104 and also to data
cache internal to processor 102.

In alternate embodiments, data processing system 100 may
include one, two, or any number of processors 102. If a
plurality of processors 102 are used in data processing system
100, any number of them may be the same, or may be differ-
ent. Note that although data processing system 100 may have
a plurality of processors 102, a single processor 102 may
itself execute a plurality of instruction sets.

Memory module 104 can include a multi-level cache archi-
tecture including one or more levels of instruction cache and
data cache module that have slower access rates than Level 1
cache modules 112. Memory 104 can also include an external
memory that is also referred to as a main memory and can
optionally include additional devices such as buffers and the
like.

FIG. 2 is a diagram of an embodiment of instruction han-
dling components that can be included in processor 102 of
FIG. 1 with latency tolerance execution of one or more pro-
gram threads (e.g., Thread0) and Threadl). Thread0 and
Threadl instruction units 200, 250 implement instruction
queues configured to provide program instructions to respec-
tive decode units 202, 252. Decode units 202, 252 can include
logic to multiplex valid instructions, decode instructions for
instruction type, source, and destination operands, generate
queue entries and tags for instructions, rename instruction
operands to a latest register mapping, determine source and
destination register dependencies between decoded instruc-
tions, check dependency with previous instructions in execu-
tion queues, and separate complex instructions into micro-
instructions. Decode units 202, 252 also include duplicate
free lists 203, 253. Duplicate free lists 203, 253 may also
include, as will be described below a carry pending valid bit
and a carry pending pointer which indicates a location with
the duplicate free list. In order to simplify the descriptions
herein, operation of processor 102 will be described in refer-
ence to the carry bit as an example status bit; however, similar
descriptions would apply to other status bits or groups of
status bits (such as, for example, conditions within a condi-
tion register, such as greater than zero, less than zero, equal to
zero, or overflow). Note also that duplicate free lists 203, 253
may also include any control logic, as needed, to write to or
update and read from or use the duplicate free list, and to
otherwise control their operation.

Decode units 202, 252 issue instructions to execution
queues, and update register renaming for issued instructions.
In the embodiment shown, a group of components 204 in
processor 102 allocated to Thread0 includes load queues 208,
210,212,214, integer queue 232, and complex integer queues
234, 236. Another group of components 254 in processor 102
allocated to Threadl includes a separate set of load queues
208-214, while integer queue 232 and complex integer
queues 234, 236 can be shared by Thread0 and Thread1. Note
each of the load queues, integer queues, dependent complex
queues, and independent complex queues can be referred to
generically as execution queues.

Note that although the architecture shows components for
Thread0 and Threadl, additional program threads can be
executed by processor 102. For example, although not labeled
in FIG. 2, the components allocated for Thread0 may be used
to execute Thread0 and a Thread2 while components allo-
cated for Threadl may be used to execute Threadl and a
Thread3. Further, processor 102 may use components for

20

25

30

35

40

45

60

4

Thread(and Thread1 to process a greater number of instruc-
tions per cycle while executing only one thread at a time.
Components that can be duplicated to support multi-thread-
ing are shown within a dashed box 204 in FIG. 2 that includes
load queues 208-214, load arbiter 216, integer arbiter 218,
branch arbiter 220, register file 222, load/store unit 224, inte-
ger execution unit 226, branch execution unit 228, and data
cache 230.

Processor 102 can further schedule execution of instruc-
tions using load arbiter 216, one or more integer arbiters 218,
240, branch arbiter 220, and complex arbiter 242. L.oad arbi-
ter 216 and integer arbiter 218 can arbitrate execution of
load/store and integer instructions in load queues 208-214.
Branch arbiter 220 can arbitrate execution of branch instruc-
tions in load queues 208-214 as well as integer instructions in
integer queue 232 and complex integer queues 234, 236.
Integer arbiter 240 and complex arbiter 242 can each arbitrate
integer instructions from complex integer queues 234, 236.

Microprocessors that require instructions to be executed
in-order experience long delays when data required to
execute the instruction is not found in cache memory, i.e., a
cache miss occurs. Further, instructions that depend on one
another may fill the execution queue and block the execution
of'independent instructions. Microprocessors that allow out-
of-order execution include a replay queue for instructions that
experience a data cache miss and constantly check for avail-
ability of source operands in order to execute instructions. In
contrast, processor 102 includes multiple load queues 208-
214 to hold the dependent instructions that experience a cache
miss in the same queue until completion instead of replaying
or re-issuing instructions while independent instructions are
free to issue from other execution queues. Additionally, when
aninstruction issues, since the instructions in queues 208-214
can be in-order, data for source operands will be available
from result forwarding or from register file 222. In many
cases, itis possible to statistically determine when data for the
source operands of an instruction will be available and sched-
ule accordingly. However, in some cases, such as L.evel-1 data
cache misses, the data may not be available as expected. In
cases where instructions are dependent on two load instruc-
tions, the dependent instructions can be sent to two different
queues 208-214. The dependent instruction in one of queues
208-214 will then be invalidated when the copy of the instruc-
tion reaches the head of another of queues 208-214.

Furthermore, some instructions, such as arithmetic logic
unit (ALU) instructions, conditional instructions, or logic
instructions, may be dependent upon (e.g. generate and/or
use) one or more status bits. This one or more status bit may
be, for example, a carry bit, a condition register bit (e.g. a
greater than zero bit, a less than zero bit, an equal to zero bit,
anoverflow bit etc.), or any grouping thereof. For example, an
“Addc” processor instruction may generate a carry bit, while
an “Adde” processor instruction may use a previously gener-
ated carry bit as a third source operand for the addition.

In single thread mode, processor 102 can concurrently send
two instructions to decode unit 202 and one instruction to
decode unit 252 resulting in execution of three instructions
per cycle. In multi-thread mode, two threads can concurrently
send two instructions each to decode units 202, 252 resulting
in execution of two instructions per cycle per thread. Decode
units 202, 252 can also handle issuing serialize instructions
such as instruction exceptions (e.g., Translation Look-aside
Buffer miss, breakpoint, and illegal instruction), software
interrupts (SWI), and instructions that modify processor con-
figuration and states.

Load arbiter 216 sends instructions to load/store unit 224.
Integer arbiter 218 sends instructions to integer execution unit

US 9,141,391 B2

5

226. Branch arbiter 220 sends instructions to branch execu-
tion unit 228. Integer queue 232 sends instructions to integer
execution unit 244. Integer arbiter 240 sends instructions to
integer execution unit 246, and complex arbiter 242 sends
instructions to complex integer execution unit 248. Note that
integer arbiters 218 and 240 can be combined into one arbiter
that receives instructions from load queues 208-214 and com-
plex integer queues 234, 236, and send instructions to integer
execution unit 226.

Load instructions from load queues 208-214 dispatch to
load/store unit 224 and will remain in a respective queue until
data is returned in the next clock cycle, effectively blocking
all dependent instructions until valid data is returned in the
next clock cycle. Load/store unit 224 can send data ready
signals to load queues 208-214 when a cache hit is detected
from data cache 230. The bottom entries of load queues
208-214 can send an entry or tag that includes time stamp
information to load arbiter 216. The time stamp information
allows load arbiter 216 to determine and send the oldest
instruction to load/store unit 224. Alternatively, load/store
arbiter 216 can receive and send instructions on a round robin
basis, where the first instruction that reaches arbiter 216 is the
first instruction sent to load/store unit 224. The round robin
basis is matched by decode units 202, 252 for issuing inde-
pendent load/store instructions to load queues 208-214.

FIG. 3 is a diagram of an embodiment of an execution
queue entry 300 that can be used for instructions in computer
processor 102 of FIG. 1 that includes several fields or tags
with the following labels and corresponding significance:

SRCO
SRCO_VALID
SRCO_DEPEND

first source operand

first source operand is valid

first operand depends on immediately preceding
instruction in the same queue

second source operand

second source operand is valid

second operand depends on immediately preceding
instruction in the same queue

SRC1
SCR1_VALID
SRC1_DEPEND

DST destination operand in register file to store result
of instruction execution

DST-VALID destination is valid

ITYPE type of instruction

VALID instruction entry is valid

LSCNT time stamp for instruction (can be counter value or
clock value)

PEND instruction has been sent to execution unit and is
waiting for data that is ready to be sent in the next
clock cycle

TAGS Keeps track of instruction ordering during execution

1-HOT Indicates multiple copies of the instructions exist in
different execution

DUPLICATE queues or indicates status bit dependency

Other suitable fields and tags can be used in entries 300 in
addition to or instead of the fields/tags shown hereinabove.
Entries 300 can be used by decoder unit 202, load queues
208-214, and arbiters 216, 218, 220, 240, 242 to keep track of
instructions. The fields/tags can be used as signals or indica-
tors in processor 102 and methods performed therein.

FIG. 4 expands upon the 1-HOT DUPLICATE field 304 of
entry 300. 1-HOT DUPLICATE 304 indicates multiple cop-
ies of the instructions existed in different execution queues or
status bit dependency. The following fields may be included
within 1-HOT DUPLICATE 304: status_duplicate, sync_du-
plicate, and duplicate. The descriptions of each of these fields
is provided in FIG. 4. The status_duplicate field, which may
also be referred to as the 1-HOT STATUS DUPLICATE field
orthe duplicate status bit indicator, or, in the case in which the
status bit is the carry bit, may also be referred to as the 1-HOT
CARRY DUPLICATE field, can either represent a read or

10

15

20

25

30

35

40

45

50

6

write. In the case of a write to a status bit (e.g. carry bit), when
the corresponding instruction of the entry is executed, this
field is used to clear the status_duplicate field in other queues.
In the case of a read from a status bit (e.g. carry bit), the
corresponding instruction of the entry waits for a status result
from a write instruction which updates the status result from
another queue to clear this status_duplicate bit. The sync_du-
plicate field, which may also be referred to as the 1-HOT
SYNC DUPLICATE field or the duplicate synchronization
instruction indicator, can either represent a sync instruction
(i.e. adummy instruction) or a pending instruction. In the case
of a sync instruction, when the corresponding instruction of
the entry is at the bottom of the queue, this sync_duplicate
field will be used to clear the sync_duplicate field of other
pending instructions in other execution queues. In the case of
a pending instruction, the corresponding instruction of the
entry waits for the sync instruction (i.e. dummy instruction)
from another queue to clear this sync_duplicate bit. With
respect to the duplicate field (which may also be referred to as
the duplicate instruction indicator), instructions which are
sent to multiple queues are sent with one or more duplicate
bits of this duplicate field set. The first duplicate instruction
which reaches the bottom entry of a queue will clear one or
more duplicate bits of another queue. An instruction is ready
for execution only if no corresponding duplicate bit is set.

PEND 302 provides information as to whether the corre-
sponding instruction is pending on condition execution. The
following fields may be stored within PEND 302: RESULT_
PENDING; CA_PENDING; CR_PENDING; SYNC_
PENDING; CA_WRITE; and CR_WRITE. The CA_PEND-
ING field indicates that the corresponding instruction has a
carry-in (thus uses a carry bit as an additional source oper-
and), and is waiting for the carry bit to be forwarded from
another execution queue (as a result of execution of the appro-
priate instruction which generates the carry bit). The
CR_PENDING field indicates that the corresponding instruc-
tion has a CR input (thus uses a condition bit from the con-
dition register as an additional source operand), and is waiting
for the CR result to be forwarded from another execution
queue (as a result of execution of the appropriate instruction
which generates the condition result). The SYNC_PEND-
ING field indicates that the corresponding instruction is wait-
ing for results from other execution queues. The CA_WRITE
field indicates whether or not the corresponding instruction
will write or generate a carry bit. The CR_WRITE field indi-
cates whether the corresponding instruction will write to the
condition register (CR). These values for CA_WRITE and
CR_WRITE can be provided by decode unit 202 when stor-
ing an instruction into an execution queue.

With reference to FIGS. 2, 3, and 4, when a first instruction
is saved to a selected queue 208-214, 232-236, a dependency
indicator (SRCO_DEPEND, SRC1_DEPEND) for each cor-
responding operand of the first instruction can be stored in
entries 300 to indicate whether or not the corresponding oper-
and depends on a second instruction that immediately pre-
cedes the first instruction within the selected queue. When the
dependency indicator for the corresponding operand indi-
cates that it does depend on the second instruction, execution
units 224-228, 244-248 can feed forward the resulting data of
the second instruction for the corresponding operand for use
in executing the first instruction. When the dependency indi-
cator (SRCO_DEPEND, SRC1_DEPEND) for the corre-
sponding operand indicates that it does not depend on the
second instruction, execution units 224-228, 244-248 can
obtain data from register file 222 for the corresponding oper-
and for use in executing the first instruction.

US 9,141,391 B2

7

In some embodiments, when load arbiter 216 selected
selects a first instruction for execution by the load/store
execution unit 224 and dependency indicator
(SRCO_DEPEND, SRC1_DEPEND) for the corresponding
operand indicates that it does depend on a second instruction,
load/store execution unit 224 feeds forward the resulting data
of the second instruction for the corresponding operand for
use in executing the first instruction. When the first instruc-
tion is selected by load arbiter 216 for execution by load/store
execution unit 224 and the dependency indicator for the cor-
responding operand indicates that it does not depend on the
second instruction, load/store execution unit 224 obtains data
from register file 222 for the corresponding operand for use in
executing the first instruction.

In some embodiments, instructions stored in load queues
208-214 have a corresponding pending indicator (RESULT_
PENDING in PEND 302) which indicates whether the
instruction is available for selection by load arbiter 216 when
the instruction appears in a bottom entry of the load queue.

FIGS. 6 and 7 illustrate diagrams of an example instruction
handling using the duplicate field of 1-HOT DUPLICATE
field 304. In the example of FIGS. 6 and 7, the following
example instruction sequence is assumed:

Load RBF<-[..]

Load RA<[..]

Load RDF<[..]

Add RC<-RA, RB

Add RF<-RC, RD

In the instruction examples herein, note the first register
reference ofthe L.oad or Add instruction (on the left side of the
arrow) refers to the destination register of the instruction (the
general purpose register (GPR) to which the result of the add
instruction will be stored), and the second and third register
references refer to the source registers of the add instructions
(the general purpose registers which store the sources of the
add instruction). Note that the denotation “RX”, in which X
can be any letter, represents a particular register in the GPR.

Also illustrated in FIGS. 6 and 7 is duplicate free list 203,
instruction issue unit 202, and load queues 208, 210, and 212
(which may also be referred to as instruction execution
queues). Entry 408 is the bottom entry of load queue 208, and
entries 410 and 412 are the next two subsequent entries of
load queue 208. Entry 414 is the bottom entry of load queue
210, and entries 416 and 418 are the next two subsequent
entries of load queue 210. Entry 410 is the bottom entry of
load queue 212, and entry 422 is the next subsequent entry of
load queue 212. In the illustrated example, instruction issue
unit dispatches instructions to queues 208, 210, and 212, and
those instructions at the bottom entry of each queue, upon
being ready for execution, may be selected by an arbiter for
execution (e.g. by load arbiter 216, integer arbiter 218, or
branch arbiter 220, based on the instruction type of the bottom
entry). Also, each instruction in the queues 208, 210, and 212
may have the format of entry 300 of FIG. 3. In the examples
of FIGS. 6 and 7, for each instruction in each entry of a queue,
a representation of the corresponding duplicate field of
1-HOT DUPLICATE field 304 is provided.

Referring to FIG. 6, instruction unit 202 has previously
dispatched the load RB instruction to queue 208, the load RA
instruction to queue 210, and the load RD instruction to queue
212. They are currently stored in entries 408, 414, and 420,
respectively. Also, instruction unit 202 has dispatched the
Add RC instruction to queues 208 and 210. Since the AddRC
instruction uses RA and RB as source registers, this instruc-
tion is dependent on both the Load RB instruction and the
Load RA instruction. Therefore, it is dispatched to the same
queues as load RB and load RA, and are stored in subsequent

10

15

20

25

30

35

40

45

50

55

60

65

8

entries to the load instructions, respectively. Currently, they
are stored in entries 410 and 416, respectively. However, since
duplicate instructions were dispatched (i.e. the add RC
instruction was sent to multiple queues), one bit of the dupli-
cate field of each multiple instruction is asserted to a logic
level 1. Therefore, duplicate field 424 of the Add RC instruc-
tion in queue 208 and duplicate field 428 of the Add RC
instruction in queue 210 have a single bit asserted to indicate
that the instructions are duplicates. Also, a first bit in duplicate
free 1ist 203 is negated to a logic level 0 to indicate that that bit
location is in use by instructions within the instruction execu-
tion queues. Note that the first bit location, from right to left,
of'duplicate free list may be referred to bitlocation 0, in which
bit locations are numbered increasing order to the left until bit
location 15. That is, in the current example, duplicate free list
203 is a 16 bit value which allows for the use of 16 bits.
Therefore, each duplicate field of an instruction within the
1-HOT duplicate field 304 is also 16 bits. Also, note that each
bit in duplicate free list 203 may also be referred to as a
duplicate dependent instruction indicator.

The instruction unit 202 then dispatches the Add RF
instruction to queues 208, 210, and 212. Since this add
instruction uses RC and RD as source registers, this instruc-
tion is dependent on three instructions already present in the
queues: each of the RC instructions in queues 208 and 210,
and the load RD instruction in queue 212. Therefore, it is
dispatched into subsequent entries of each queue. Currently,
it is stored into entries 412, 418, and 422. In this case, the Add
RF instruction is not duplicated but triplicated. In the case of
a triplicated instruction, 3 bits of the duplicate field are used
to indicate the triplication of the instruction. Therefore, since
duplicate free list 203 indicates that bit location 0 is already in
use by another instruction (e.g. the duplicated Add RC
instruction in this case), the next 3 bit locations (bit locations
1-3) are used. Therefore, these 3 bit locations of duplicate free
list 203 are negated to a logic level 0, and in the duplicate
fields of each Add RF instruction (fields 426, 430, and 432)
are set accordingly. The same 3 bit locations (bit locations
1-3) in each field are used to store a distinct 3-bit value: 110
in duplicate field 426, 101 in duplicate field 430, and 011 in
duplicate field 432. Therefore, note that a duplicated instruc-
tion requires the use of one bit whereas a triplicated instruc-
tion requires the use of 3 bits. Furthermore, for a duplicate
instruction, only a single bit position of the duplicate field of
each duplicate instruction is a logic level one. Similarly, for a
triplicate instruction, only two bit positions of the duplicate
field of each triplicate instruction is a logic level one. There-
fore, for a triplicate instruction, a 3 bit value of 111 is notused.
That is, the number of bit positions at a logic level 1 in each
duplicate field indicates how many other “copies” of the
instruction exist elsewhere in the queues.

Referring to FIG. 7, FIG. 7 illustrates the queues of FIG. 6
at a later point in time. In the example of FIG. 7, solid line
fields indicate new values and the dotted line fields are used to
indicate the previous value. In FIG. 7, the Load RD instruc-
tion has been selected for execution by a load arbiter and
removed from queue 212. All other instructions are then
shifted down, such that the Add RF instruction is now in
bottom entry 420 of queue 212. Note that for an instruction in
a bottom entry of a queue to be ready for selection by an
arbiter for execution, its duplicate field must be clear (all logic
level zeros). Otherwise, it indicates that its duplicate or trip-
licate counterparts are still waiting for a dependency to be
resolved. Therefore, once the Add RF instruction reaches
bottom entry 420 with a non-zero duplicate field, it is invali-
dated, and the non-zero duplicate field is used to modify the
duplicate fields of the other Add RF instructions. A logic level

US 9,141,391 B2

9

one in a particular bit location of duplicate field 432 is used to
update clear the value of the corresponding bit location of
duplicate fields 430 and 426 of the other instantiations of the
Add RF instruction. Therefore, since bit locations 1 and 2 of
duplicate field 432 are logic level ones, bit locations 1 and 2
of each of duplicate fields 430 and 426 are clear to zero,
leaving only one bit position at a logic level one. This is
because the remaining Add RF instructions are duplicates and
no longer triplicates. This also frees up bit locations for use by
other instructions. Therefore, bit locations 1 and 2 of dupli-
cate free list 203 are updated to logic level ones to indicate
that they are free for use again. The Add RF instruction has
thus been invalidated and can be removed from queue 212 as
well.

Whichever of the remaining two Add RF instructions is the
first Add RF instruction to reach a bottom entry of a queue, it’s
duplicate field will be used to clear the duplicate field of the
last remaining instruction such that the duplicate field of the
last remaining instruction will be zero. The first Add RF
instruction which reached the bottom entry is also used to
update the corresponding bit position of duplicate free list
203 to indicate that the bit position is again free for use, and
the instruction can be invalidated and removed from the
queue. Also, since the duplicate field of the last remaining
instruction is now zero, when that last remaining instruction
reaches the bottom entry of a queue, it is considered ready for
execution and can be selected for execution by an arbiter.

FIGS. 8 and 9 illustrate diagrams of an example instruction
handling using the duplicate field, status_duplicate field, and
sync_duplicate field of 1-HOT DUPLICATE field 304. In the
example of FIGS. 8 and 9, the following example instruction
sequence is assumed:

Load RBF<-[..]

Addc RC<-RA,RB

Adde RG<-RF,RE

Add RF<-RC, RD

Mult

As described above, the first register reference of the Load,
Addc, Add, or Adde instruction refers to the destination reg-
ister of the instruction, and the second and third register
references refer to the source registers of the add instructions
(the general purpose registers which store the sources of the
add instruction). Also, the Addc instruction generates or
writes (i.e. updates) a carry bit as a result of the instruction. In
one embodiment, the execution unit which executes the Addc
instruction (such as the appropriate integer execution unit)
will write the carry bit to a carry register which may also be
located in the execution unit or elsewhere within processor
102. Therefore, the Addc instruction has two destinations:
(1.) the GPR provided in the instruction in which to store the
result ofthe addition and (2.) the carry register. Also, the Adde
instruction uses (i.e. reads) a previously generated carry bit as
an additional source operand. For example, for the first Adde
instruction above, the contents of RF, RE, and the carry bit
from the carry register are added, the result of which is stored
in RG. Therefore, the Adde instruction uses 3 source oper-
ands. In this example, the carry bit is generated by the Addc
RC instruction, which is the most recent carry generating
instruction in this example

Also illustrated in FIGS. 8 and 9 is carry (CA) pending
pointer 502 and carry (CA) pending valid bit 500. This may be
located with duplicate free list 203 in instruction issue unit
202. In the example of FIGS. 8 and 9, duplicate free list not
only keeps track of duplicate and triplicate instructions, but is
also used to track carry generating/using instructions within
the queues as well as dummy sync instructions (also referred
to as dummy instructions or sync instructions) within the

20

30

35

40

45

50

55

10

queues. As will be described in more detail below, CA pend-
ing pointer 502 is used to keep track of which bit locations of
duplicate free list 203 (and of the status_duplicate field of the
corresponding instructions which generate a carry) are being
used for maintaining carry information. CA pending valid bit
500 is a single bit which, if asserted, indicates at least one bit
location in CA pending pointer 502 is using a bit location in
duplicate free list 203 (e.g. indicates that at least one bit of CA
pending pointer 502 is at a logic level one).

Note that the examples which will be described herein, the
carry bit is used as a particular example of a status bit. There-
fore, the descriptions having been primarily with respectto a
carry bit and instructions which generate and/or use a carry
bit, but the descriptions and methodology apply to other sta-
tus bits as well. For example, in addition to a CA pending
pointer field and CA pending valid bit, there may be a CR
(condition register) pending pointer field and a CR pending
valid bit. In this manner, bit locations within the duplicate free
list may be used to indicate usage of bit locations for any type
of status as well as to keep track of duplicate and triplicate
instructions.

Also, in some instances, an instruction which is of a dif-
ferent type than that which can be handled by the arbiter
connected to the queues but has a dependency on an instruc-
tion in those queues is dispatched. For example, a multiply
instruction, which needs to be handled by a complex integer
executionunit 248 may be dependent on a load or add instruc-
tion, but complex arbiter 242 is not able to select instructions
from load queues 208-214. In this situation, the actual mul-
tiply instruction is sent to a complex queue (such as queue 234
or 236) while a sync instruction (also referred to as a dummy
sync instruction) is provided to the other queues which are of
a different type (such as any of queues 208-214). Further-
more, for the actual instruction which has a corresponding
sync instruction elsewhere in another queue, it’s sync_pend-
ing bit in the corresponding PEND field 302 is set to indicate
that it is waiting for results from other execution queues. This
actual instruction therefore cannot be ready for selection for
execution until it’s sync_pending bit is cleared. As will be
described in more detail below, the duplicate free list may also
be used to keep track of sync instructions.

In the examples of FIGS. 8 and 9 (as well as FIGS. 10-13),
for each instruction in each entry of a queue which is dupli-
cated, a representation of the corresponding duplicate field of
1-HOT DUPLICATE field 304 is provided in the right hand
side of the entry. For each adde or addc instruction, a repre-
sentation of the corresponding status_duplicate field of
1-HOT DUPLICATE field 304 is provided in the left hand
side of the entry. For each dummy sync instruction, a repre-
sentation of the corresponding sync_duplicate field of 1-HOT
DUPLICATE field 304 is provided in the left hand side of the
entry. Note that, in one embodiment, CA pending pointer 502,
as well as each of the duplicate fields, status_duplicate fields,
and sync_duplicate fields of the instruction queue entries
each include a same number of bits. Therefore, in the current
example, each would include 16 bits. However, in order to
simplify the illustrations going forward (for FIGS. 8-13),
only the lower 8 bit locations (bit locations 7-0) are being
illustrated for the fields in the queue entries. Also, for the
examples described herein, a duplicate free list pointer may
be used to keep track of free bit locations which may be used
for keeping track of duplicate instructions, sync instructions,
or status bits, as will be described below, in which a logic level
1 in a bit location indicates an available bit location and a
logic level 0 in a bit location indicates a currently used and
thus currently unavailable bit location.

US 9,141,391 B2

11

In the examples herein, the dotted-line versions of dupli-
cate free list 203 or of any of the fields within the entries
illustrate a starting value when the snapshot is initially taken,
and the solid line version represents the resulting values after
some instruction processing is performed. In the example of
FIG. 8, instruction unit 202 has previously dispatched the
load RB instruction to queue 208. It is currently stored in
entry 408. Also, instruction unit 202 has dispatched the Addc
RC instruction to queues 208 and 210. The Addc RC instruc-
tion was sent to both queues 208 and 210 since it includes
dependencies on instructions already in the queue. In the
current example, at the current snapshot in time, the instruc-
tion on which the Addc RC instruction depended in queue 210
has already been selected for execution and thus removed
from queue 210. Therefore, the Addc instruction is in the
bottom entry of queue 210. Since duplicate instructions were
dispatched, one bit of the duplicate field of each multiple
instruction is asserted to a logic level 1 (the bit in bit location
0, in this example). Therefore, the original value of duplicate
field 508 of the Addc RC instruction in queue 208 (the one in
the dotted lines) and the value of duplicate field 514 of the
Add RC instruction in queue 210 have a single bit asserted to
indicate that the instructions are duplicates. Also, a first bit in
the original value of duplicate free list 203 (in the dotted lines)
is at a logic level 0 to indicate that that bit location is in use.
Also, since the Addc RC instruction writes (i.e. generates) a
carry bit, a bit location, corresponding to an available bit
location of duplicate free list 203, of the status_duplicate field
of'each Addc RC instruction is used. In the current example,
bit location 2 is used, in which bit location 2 of duplicate free
list 203 is cleared to a logic level O (as indicated in the dotted
lined version of duplicate free list 203), and bit location 2 of
each of status_duplicate fields 506 and 516 is set to a logic
level 1. Also, the CA_WRITE bit in PEND field 302 of each
of'the Addc RC instructions is set to a logic level 1 to indicate
that the instruction will write a carry bit.

Instruction unit 202 has also dispatched the Adde RG
instruction to queue 212 and currently is stored in entry 420 of
queue 212. Since it is not a duplicate instruction, its duplicate
field 520 is all zeros. However, as described above, the Adde
instruction requires the most recent generated carry bit.
Therefore, the value of CA pending pointer 502 is used to
generate the status_duplicate field 518 of the Adde instruc-
tion. That is, CA pending pointer 502 keeps track of the
duplicate bit location corresponding to the most recently gen-
erated carry bit at any point in time, and therefore, that is the
bit location asserted in the status_duplicate field of an instruc-
tion dispatched to a queue which uses the carry bit. That is, the
value of CA pending pointer 502 is stored to the status_du-
plicate field. Also, since the adde instruction requires the use
of'the carry bit, the CA_PENDING bit of PEND field 302 of
the adde instruction in queue 212 is set to indicate that it is
waiting for a carry bit to be forwarded from another execution
queue. The Add RF instruction has been dispatched by
instruction unit 202 to queues 208 and 210. Since this add
instruction uses RC as a source register, this instruction is
dependent on the Addc instructions already in queues 208 and
210. Therefore, it is dispatched into subsequent entries of
each queue. They are currently stored in entries 412 and 416.
In this case, the Add RF instruction is duplicated. Therefore,
upon dispatching the Add RF instructions to the queues, bit
location 3 of duplicate free list 203 is cleared to a logic level
0 (as shown in the dotted line version) and bit location 3 of
duplicate fields 512 and 504 are asserted to a logic level 1 (as
shown in the dotted line version of field 504). A Multiply
Dummy Sync instruction (corresponding to the actual multi-
ply instruction which dispatched to a complex integer queue)

5

10

15

20

25

30

35

40

45

50

55

60

65

12

is dispatched to queue 210. That is, it is assumed it includes a
dependency on an instruction already present in queue 210. In
this case, bit location 5 of duplicate free list 203 is used to
keep track of the instruction. Therefore, bit location 5 of
sync_duplicate field 510 is asserted to a logic level 1.

Referring to queue 210 of FIG. 8, with the existence of the
Addc instruction at the bottom entry of queue 210 with a
non-zero duplicate field 514, some instruction processing is
performed. As described above, the Addc instruction is invali-
dated, and the asserted bit in bit location 0 of duplicate field
514 is used to clear bit location 0 of duplicate field 508 (thus
resulting in the value in the solid lined box) and is used to set
bit location 0 of duplicate free list 203 to a logic level 1 (as
seen in the solid lined box) to indicate that this bit location is
now free for use again by another instruction dispatched to the
queues. Once the Addc instruction from bottom entry 414 is
invalidated, the next sequential instruction is also an instruc-
tion with a non-zero duplicate field 512. Similarly, this
instruction is also invalidated in the same cycle as the Addc
instruction and the asserted bit in bit location 3 of duplicate
field 512 is used to clear bit location 3 of duplicate field 504
(thus resulting in the value in the solid lined box) and is used
to set bit location 3 of duplicate free list 203 to a logic level 1
(as seen in the solid lined box) to indicate that this bit location
is now free for uses again by another instruction dispatched to
the queues. Once this Add instruction is invalidated, the next
sequential instruction is a dummy sync instruction which has
reached the bottom entry of the queue, and is therefore also
processed. Itis also invalidated in the same clock cycle as the
Addc and Add instructions, and the asserted bit in bit location
5 of sync_duplicate field 510 is sent to the complex queue
which contains the actual multiple instruction to clear its
sync_pending bit in PEND field 302. It is also used to set bit
location 5 of duplicate free list 203 to a logic level 1 (as seen
in the solid lined box) to indicate that this bit location is now
free for use again by another instruction dispatched to the
queues.

Referring now to FIG. 9, note that queue 210 is empty since
the 3 instructions in this queue in FIG. 8 were all processed
and invalidated. Also, note that dotted line version of dupli-
cate free list 203 now corresponds to the solid lined version in
FIG. 8, since it will be updated as a result of the processing
which will be done in reference to FIG. 9. In F1G. 9, the Load
RB instruction from queue 208 has been selected for execu-
tion and has thus been removed from queue 208. Each of the
instructions in queue 208 has therefore been shifted down by
one, and the Addc instruction is now in bottom entry 408. In
this case, the Addc instruction is a valid instruction ready to be
selected for execution because its duplicate field 508 is zero,
indicating that it is the only remaining instruction with no
other duplicates. However, the status_duplicate field 506 has
a logic level one in bit location 2 which indicates that the
instruction writes to a status bit, e.g. the carry bit in the current
example, and that another instruction is dependent upon this
carry bit. The asserted bit in bit location 2 is used to clear the
bit in bit location 2 of status_duplicate field 518, thus result-
ing in the value of the solid lined box. In this manner, the Adde
instruction is ready for selection for execution since both its
duplicate field 520 and status_duplicate field 518 are zero.
That is, note that for an instruction which generates a status bit
(e.g. carry bit), its duplicate field must be zero for it to be
ready for execution, but its status_duplicate field need not be
zero since it is used to notify other instructions that the carry
bit is now valid. However, for an instruction which reads or
uses a status bit (e.g. the carry bit), both its duplicate field and
status_duplicate field must be zero for it to be ready for
execution. If its status_duplicate field is non-zero, then it is

US 9,141,391 B2

13

still waiting on a result of another instruction which generates
the corresponding status bit. Note that the asserted bit in bit
location 2 of status_duplicate field 506 is also used to set bit
location 2 of duplicate free list back to a logic level 1 (as
shown in the solid lined box), and is also used to clear bit
location 2 of CA pending pointer 502 since bit location 2 of
duplicate free list 203 no longer corresponds to a carry bit.
Also, since CA pending pointer 502 is now all zeros, CA
pending valid bit 500 is also cleared to a logic level zero.
However, if there were other asserted bits in CA pending
pointer 502, even though bitlocation 2 is cleared, CA pending
valid bit 500 would have remained asserted.

FIGS. 10 and 11 illustrate diagrams of an example instruc-
tion handling using the duplicate field, status_duplicate field,
and sync_duplicate field, of 1-HOT DUPLICATE field 304.
In the example of FIGS. 10 and 11, the following example
instruction sequence is assumed:

Load RBF<-[..]

Addc RC<-RA,RB

Adde RG<-RF,RE

Mult

Therefore, note that the instruction sequence is very similar
to that of the example in FIGS. 8 and 9, with the exception that
there is no Add RF<—RC, RD instruction. also, the Mult
instruction, in the current example, depends on an instruction
in each of queues 208 and 210 (rather than on just an instruc-
tion in queue 210, as in the previous example). Therefore, the
descriptions of fields 604, 606, 612, 614, 616, and 618 are
analogous to the descriptions of fields 506, 508, 516, 514,
518, and 520, respectively, provided above with respect to
FIGS. 8 and 9.

After instruction unit 202 has dispatched the load RB
instruction to queue 208, the Addc instruction to each of
queues 208 and 210, and the Adde instruction to queue 212,
note that bit location 1 (due to duplicate Addc instructions)
and bit location 2 (due to the carry bit generated by the Addc
instruction) of duplicate free list 203 are at a logic level zero
(in the dotted lined version of duplicate free list 203). Also,
due to bit location 2 of duplicate free list being a logic level O
to keep track of the carry bit generated by the Addc instruc-
tion, CA pending pointer is set to point to bit location 2 (in
which, for example, bit location 2 of CA pending pointer 502
is set to a logic level 1). In the current example, instruction
unit 202 dispatches the multiply instruction. The actual mul-
tiply instruction may be dispatched to a complex integer
queue. In the current example, it is assumed that the multiply
instruction includes a dependency on an instruction already
present in queue 208 as well as on an instruction already
present in queue 210. Therefore, duplicate multiply dummy
sync instructions are dispatched to queues 208 and 210. In
this case, bit location 5 of duplicate free list 203 is used to
keep track of the sync instructions, and bit location 5 of
sync_duplicate field 608 is asserted to a logic level 1. Also,
since the dummy sync instruction itself is also a duplicate
instruction, bit location 3 of duplicate fields 610 and 602 are
asserted to a logic level 1, and bit location 3 of duplicate free
list 203 is cleared to a logic level O (as seen in the dotted lined
versions of field 602 and duplicate free list 203).

Referring to queue 210 of FIG. 10, with the existence of the
Addc instruction at the bottom entry of queue 210 with a
non-zero duplicate field 614, some instruction processing is
performed. As described above, the Addc instruction is invali-
dated, and the asserted bit in bit location 0 of duplicate field
614 is used to clear bit location 0 of duplicate field 606 (thus
resulting in the value in the solid lined box) and is used to set
bit location 0 of duplicate free list 203 to a logic level 1 (as
seen in the solid lined box) to indicate that this bit location is

20

25

40

45

50

55

65

14

now free for use again by another instruction dispatched to the
queues. Once the Addc instruction from bottom entry 414 is
invalidated, the next sequential instruction is also an instruc-
tion with a non-zero duplicate field 610. Similarly, this
instruction is also invalidated in the same cycle as the Addc
instruction and the asserted bit in bit location 3 of duplicate
field 610 is used to clear bit location 3 of duplicate field 602
(thus resulting in the value in the solid lined box) and is used
to set bit location 3 of duplicate free list 203 to a logic level 1
(as seen in the solid lined box) to indicate that this bit location
is now free for uses again by another instruction dispatched to
the queues. Therefore, one of the duplicate multiply dummy
sync instructions has been invalidated, and the multiply
dummy sync instruction will actually be processed when the
remaining multiply dummy sync instruction in queue entry
412 reaches the bottom entry of queue 208.

Referring now to FIG. 11, note that queue 210 is empty
since the 2 instructions in this queue in FIG. 10 were all
processed and invalidated. Also, note that dotted line version
of duplicate free list 203 now corresponds to the solid lined
version in FIG. 10, since it will be updated as a result of the
processing which will be done in reference to FIG. 11. In FIG.
11, the Load RB instruction from queue 208 has been selected
for execution and has thus been removed from queue 208.
Each of the instructions in queue 208 has therefore been
shifted down by one, and the Addc instruction is now in
bottom entry 408. In this case, the Addc instruction is a valid
instruction ready to be selected for execution because its
duplicate field 606 is zero, indicating that it is the only
remaining instruction with no other duplicates. However, sta-
tus_duplicate field 604 has a logic level one in bit location 2
which indicates that the instruction writes to a status bit, e.g.
the carry bit in the current example, and that another instruc-
tion is dependent upon this carry bit. The asserted bit in bit
location 2 is used to clear the bit in bit location 2 of status_
duplicate field 616, thus resulting in the value of the solid
lined box. In this manner, the Adde instruction is ready for
selection for execution since both its duplicate field 618 and
status_duplicate field 616 are zero. Note that the asserted bit
inbit location 2 of status_duplicate field 604 is also used to set
bit location 2 of duplicate free list 203 back to a logic level 1
(as shown in the solid lined box), and is also used to clear bit
location 2 of CA pending pointer 502 since bit location 2 of
duplicate free list 203 no longer corresponds to a carry bit.
Also, since CA pending pointer 502 is now all zeros, CA
pending valid bit 500 is also cleared to a logic level zero.

After selecting the valid Addc instruction for execution, the
remaining multiple dummy sync instruction is shifted to bot-
tom entry 408 of queue 208 and is therefore processed. At this
point, the multiply dummy sync instruction is invalidated,
and the asserted bit in bit location 5 of sync_duplicate field
600 is sent to the complex queue which contains the actual
multiple instruction to clear its sync_pending bit in PEND
field 302 in the next cycle. It is also used to set bit location 5
of'duplicate free list 203 to a logic level 1 (as seen in the solid
lined box) to indicate that this bit location is now free for use
again by another instruction dispatched to the queues.

FIGS. 12 and 13 illustrate diagrams of an example instruc-
tion handling using the duplicate field, status_duplicate field,
and sync_duplicate field, of 1-HOT DUPLICATE field 304.
In the example of FIGS. 12 and 13, the following example
instruction sequence is assumed:

Load RB<[..]

Addc RC<-RA,RB

Adde RG<—RF, RE

Load RG<-[RC+RH]

US 9,141,391 B2

15

Therefore, note that the instruction sequence is very similar
to that of the example in FIGS. 8 and 9, with the exception that
there is no Add RF<—RC, RD instruction or Mult instruction.
Instead, after the Adde instruction, is a load instruction which
loads the value stored in the address location RC+RH into
RG. Therefore, note that the load instruction is dependent on
the Adde RC instruction (due to the use of RC), and it is
assumed that the load instruction is also dependent on an
instruction in the complex queue which generates RH. Note
that the descriptions of fields 706, 708, 714,716, 718, and 720
are analogous to the descriptions of fields 506, 508, 516, 514,
518, and 520, respectively, provided above with respect to
FIGS. 8 and 9.

After instruction unit 202 has dispatched the load RB
instruction to queue 208, the Addc instruction to each of
queues 208 and 210, and the Adde instruction to queue 212,
note that bit location 1 (due to duplicate Addc instructions)
and bit location 2 (due to the carry bit generated by the Addc
instruction) of duplicate free list 203 are at a logic level zero
(in the dotted lined version of duplicate free list 203). Also,
due to bit location 2 of duplicate free list 203 being a logic
level O to keep track of the carry bit generated by the Addc
instruction, CA pending pointer is set to point to bit location
2 (in which, for example, bit location 2 of CA pending pointer
502 is set to a logic level 1). In the current example, instruc-
tion unit 202 then dispatches the load RG instruction. Since
the load RG instruction is dependent on the Addc instruction,
it is dispatched as duplicate instructions to both queue 208
and 210. In this case, bit location 3 of duplicate free list 203 is
used to keep track of the duplicate instructions and is at a logic
level O (as seen in the dotted line version). Therefore, bit
location 3 of each of duplicate fields 704 (in the dotted lined
version) and 712 are atalogic level 1. Also, since itis assumed
that the load instruction is also dependent on an instruction in
the complex queue, a load dummy sync instruction corre-
sponding to the load RG instruction is dispatched to the
complex queue. In this case, bit location 5 of duplicate free
list 203 is selected to keep track of the dummy sync instruc-
tionand is therefore at a logic level O (as seen in the dotted line
version). Also, bit location 5 of each of sync_duplicate fields
702 and 710 are at a logic level 1 to indicate that these
instructions are waiting for a dummy sync instruction from
another queue (e.g. the complex integer queue) to be pro-
cessed and thus clear this bit in the sync_duplicate field. Also,
bit location 5 of the sync_duplicate field of the load dummy
sync instruction is also set to a logic level 1 (as was done for
the multiply dummy sync instruction in the examples of
FIGS. 8 and 10). Also, the sync_pending field of PEND 302
of each of the actual load RG instructions in queues 208 and
210 is set to a logic level 1 indicating that it is waiting for
results from other execution queues.

Referring to queue 210 of FIG. 12, with the existence of the
Addc instruction at the bottom entry of queue 210 with a
non-zero duplicate field 716, some instruction processing is
performed. As described above, the Addc instruction is invali-
dated, and the asserted bit in bit location 0 of duplicate field
716 is used to clear bit location 0 of duplicate field 708 (thus
resulting in the value in the solid lined box) and is used to set
bit location 0 of duplicate free list 203 to a logic level 1 (as
seen in the solid lined box) to indicate that this bit location is
now free for use again by another instruction dispatched to the
queues. Once the Addc instruction from bottom entry 414 is
invalidated, the next sequential instruction is also an instruc-
tion with a non-zero duplicate field 712. Similarly, this
instruction is also invalidated in the same cycle as the Addc
instruction and the asserted bit in bit location 3 of duplicate
field 712 is used to clear bit location 3 of duplicate field 704

40

45

16

(thus resulting in the value in the solid lined box) and is used
to set bit location 3 of duplicate free list 203 to a logic level 1
(as seen in the solid lined box) to indicate that this bit location
is now free for uses again by another instruction dispatched to
the queues. Therefore, one of the duplicate load RG instruc-
tions has been invalidated.

Referring now to FIG. 13, note that queue 210 is empty
since the 2 instructions in this queue in FIG. 12 were all
processed and invalidated. Also, note that dotted lined version
of duplicate free list 203 now corresponds to the solid lined
version in FIG. 12, since it will be updated as a result of the
processing which will be done in reference to FIG. 13. In FIG.
13, the Load RB instruction from queue 208 has been selected
for execution and has thus been removed from queue 208.
Each of the instructions in queue 208 has therefore been
shifted down by one, and the Addc instruction is now in
bottom entry 408. In this case, the Addc instruction is a valid
instruction ready to be selected for execution because its
duplicate field 708 is zero, indicating that it is the only
remaining instruction with no other duplicates. However, sta-
tus_duplicate field 706 has a logic level one in bit location 2
which indicates that the instruction writes to a status bit, e.g.
the carry bit in the current example, and that another instruc-
tion is dependent upon this carry bit. The asserted bit in bit
location 2 is used to clear the bit in bit location 2 of status_
duplicate field 718, thus resulting in the value of the solid
lined box. In this manner, the Adde instruction is ready for
selection for execution since both its duplicate field 720 and
status_duplicate field 718 are zero. Note that the asserted bit
in bit location 2 of status_duplicate field 706 is also used to set
bit location 2 of duplicate free list 203 back to a logic level 1
(as shown in the solid lined box), and is also used to clear bit
location 2 of CA pending pointer 502 since bit location 2 of
duplicate free list 203 no longer corresponds to a carry bit.
Also, since CA pending pointer 502 is now all zeros, CA
pending valid bit 500 is also cleared to a logic level zero.

After selecting the valid Addc instruction for execution, the
remaining [.oad RG instruction is shifted to bottom entry 408
of queue 208. However, the Load RG instruction is not ready
for execution until its sync_duplicate field is zero since it is
dependent on an instruction in another type queue. Once that
instruction in the other type queue has been executed, the
SYNC _clear of that instruction can be sent from the other
type queue (e.g. the complex integer queue) to queue 208 in
order to clear bit location 5 of sync_duplicate field 702 of the
load RG instruction, as shown by the solid lined version of
field 702 in FIG. 13. Also, the SYNC_clear can be used to
clear the sync_pending bit of PEND field 302 of the load RG
instruction. At this point, the load RG instruction is ready for
selection for execution.

FIG. 14 illustrates, in flow diagram form, a method 1000 of
processing an instruction received from instruction unit 202
in accordance with one embodiment. Method 1000 begins
with start 1002 and proceeds to block 1004 in which a first
valid instruction is received by instruction unit 202. Method
1000 proceeds to block 1006 in which instruction unit 202
decodes the instruction to determine carry bit references. For
example, as described above, an instruction may generate or
write or update a carry bit (such as an Addc instruction) or an
instruction may read or use a carry bit (such as an Adde
instruction). Other instructions may both write and read a
carry bit. From block 1006, method 1000 proceeds to deci-
sion diamond 1008 and decision diamond 1014. At decision
diamond 1008, it is determined whether the decoded instruc-
tion writes or updates a carry bit. If not, method 1000 pro-
ceeds to block 1024 in which the instruction is dispatched to
an execution queue. If it does write a carry bit, method 1000

US 9,141,391 B2

17

then proceeds to block 1010 in which a 1-hot duplicate entry
is assigned to the instruction. That is, a bit location of dupli-
cate free list 203 is assigned to keep track of the carry bit, and
the corresponding bit location of the duplicate field of the
instruction is set to a logic level 1 (as was described above, for
example, in reference to the Addc instruction). Also, the
pointer is increased (referring to the duplicate free list pointer
which keeps track of available bit locations in duplicate free
list 203). Also, the CA pending pointer is set to point to the
appropriate bit location (e.g. the corresponding bit location of
the CA pending pointer is set to a logic level 1, as described,
for example, in reference to CA pending pointer 502), and the
CA pending valid bit is also asserted (e.g. set to a logic level
one). Method 1000 then proceeds to block 1012 in which the
issued decoded instruction will have the corresponding CA
write pending bit sit when stored in an execution queue. For
example, the CA_WRITE field of the PEND field 302 of the
issued instruction will be set when dispatched and stored in an
execution queue. Method 1000 then proceeds to block 1024
in which the issued instruction is dispatched.

Referring back to decision diamond 1014, if the decoded
instruction does not read a carry bit, then method 1000 pro-
ceeds to block 1024. If the decoded instruction does read or
use a carry a bit, method 1000 proceeds to decision diamond
1016 in which it is determined if the CA pending valid bit
corresponding to the CA pending pointer is set (e.g. is a logic
level one). If not, method 1000 proceeds to decision diamond
1018 in which the CA bit is read from the carry (CA) register.
For example, the register may be located in the corresponding
executionunit of processor 102 or elsewhere within processor
102. Method 1000 then proceeds to block 1024. If, at decision
diamond 1016, the CA pending valid bit is set, method 1000
proceeds to block 1020 in which the 1-hot duplicate entry
from the CA pending pointer is assigned to the issued
decoded instruction. For example, as described in reference to
the Adde instruction above, the value of CA pending pointer
502 is stored in the status_duplicate field of 1-HOT DUPLI-
CATE field 304 of the issued instruction when itis stored in a
queue. Method 1000 proceeds to block 1022 in which the
issued decoded instruction will have the CA_PENDING bit
of PEND field 302 set when stored in the execution queue.
Method 1000 then proceeds to block 1024.

FIG. 15 illustrates, in flow diagram form, a method 1100 of
processing an instruction selected by an arbiter for execution
in accordance with one embodiment. Method 1100 begins
with block 1102 in which an instruction is selected by an
arbiter for execution. For example, when an instruction is
ready for execution and it reaches the bottom entry of an
execution queue, it can be selected by an appropriate arbiter
for execution. For example, an instruction may be selected by
load arbiter 216 or integer arbiter 218 from a bottom entry of
any of load queues 208, 210, 212, and 214. Note that for an
instruction to be selected for execution by an arbiter, it must
be avalid instruction ready for execution. This means that that
the duplicate field of that instruction must be clear (all zeros).
For example, referring to the example of FIGS. 8§ and 9 above,
when the Addc RC instruction in queue 210 reaches bottom
entry 414, it is not a valid instruction ready for execution
because duplicate field 514 is non-zero. In contrast, when the
Addc instruction in queue 208 reaches bottom entry 408 (as in
FIG. 9), it is a valid instruction ready for selection for execu-
tion since duplicate field 508 is clear. Referring back to FIG.
15, method 1100 proceeds to decision diamond 1104 in which
it is determined if the CA_ WRITE bit of the selected instruc-
tion is set (e.g. is at a logic level 1). If not, method 1100 ends
atend 1118. However, if so, method 1100 proceeds to blocks
1106 and 1112. In block 1106, the 1-HOT CA duplicate fields

10

15

20

25

30

35

40

45

50

55

60

65

18

are sent to clear the CA duplicate bits in other queues. For
example, this may refer to using the status_duplicate field
(which corresponds to the 1-HOT CA duplicate field) of the
selected instruction to clear the corresponding asserted bit
location in status_duplicate fields of other instructions. For
example, as described above in reference to the Addc instruc-
tion in bottom entry 408 of queue 208 of FIG. 9 (which is the
Addc instruction which may be selected for execution by the
arbiter), the asserted bit in bit location 2 of status_duplicate
field 506 is used to clear bit location 2 of status_duplicate field
518 of the Adde instruction in queue 212. Method 1100
proceeds to decision diamond 1108 in which it is determined
if the CA duplicate bits (i.e. bits of the status_duplicate field)
in the other queues are cleared. If so, method 1100 proceeds
to block 1110 in which the instruction in these other queues
whose bits of the status_duplicate field are cleared are now
ready for execution. Also, the CA_PENDING bits of these
other instructions which are now ready for execution are also
cleared since the carry bit they are needing has been gener-
ated. For example, referring again to the example of FIG. 9,
the CA_PENDING bit of PEND field 302 of the Adde instruc-
tion in queue 212 is cleared and since status_duplicate field
518 is now all zeros, it is a valid instruction ready for selection
for execution by an arbiter. Method 1110 then ends at end
1118. If at decision diamond 1108 the CA duplicate bits in
other queues are not all cleared, then method 1100 ends atend
1118. That is, if other bits within the status_duplicate field of
an instruction are still set, then the instruction is still waiting
for other carry bits to be generated and cannot yet be selected
for execution.

Referring back to bock 1112, the 1-HOT CA duplicate
fields (i.e. status_duplicate fields) are sent to clear the dupli-
cate bit in the duplicate free list and CA pending pointer. For
example, referring again to the example of FIG. 9, status_du-
plicate field 506 is used to set bit location 2 of duplicate free
list 203 back to a logic level 1 to indicate it is now free for use
and to clear bitlocation 2 of CA pending pointer 502 to a logic
level O since bit location 2 of duplicate free list 203 is no
longer keeping track of a carry bit. Method 1100 then pro-
ceeds to decision diamond 1114 in which it is determined if
the bits in the CA pending pointer are cleared. If so, method
1100 proceeds to block 1116 in which the CA pointer pending
valid bit is cleared and the method ends at end 1118. If there
are other bits in the CA pending pointer which are still at a
logic level 1, then the CA pointer pending valid bit is not
cleared, and the method ends at end 1118. That is, referring
back to the example of FIG. 9, since all bits in CA pending
pointer 502 are cleared, CA pending valid bit 500 is also
cleared.

Note that methods 1000 and 1100 have been described in
reference to the carry bit as a particular example of a status bit.
However, similar descriptions would apply to other status
bits. For example, in block 1006, an instruction can be
decoded to determine any references or dependencies on a
status bit or group of status bits. In decision diamonds 1008
and 1014, determinations can be made as to whether the one
or more status bits are written to or updated by the instruction
and/or used or read by the instruction. Similarly, the corre-
sponding status pending bits in PEND field 302 may be set or
cleared as needed.

FIG. 16 illustrates, in flow diagram form, a method 1200 of
processing an instruction received by instruction unit 202 in
accordance with one embodiment. Method 1200 begins with
start 1201 and proceeds to block 1202 in which a first valid
instruction is received and decoded to determine the instruc-
tion type. Method 1200 proceeds to block 1204 in which the
received instruction is decoded to determine the operands of

US 9,141,391 B2

19

the instruction. Method 1200 proceeds to block 1206 in which
the operands are renamed to correspond to physical registers.
The method then proceeds to block 1208 in which the oper-
ands are checked for dependencies with all execution queues.
Method 1200 proceeds to decision diamond 1210 in which,
for each execution queue, it is determined if there is a match
(i.e. if there is an instruction already present in the queue on
which an operand of the currently decoded instruction
depends). If not, method 1200 proceeds to block 1218 in
which the decoded instruction is dispatched to an indepen-
dent execution queue. Thatis, the decoded instruction may be
issued to an empty queue, if one is available, or to a queue
with the fewest entries. The method then ends at end 1238.
Referring back to decision diamond 1210, method 1200 pro-
ceeds to both decision diamonds 1212 and 1222.

At decision diamond 1212, it is determined if the match
which was determined at decision diamond 1210 is with an
instruction that is in a same-type queue. A same-type queue
indicates that the currently decoded instruction and the
instruction on which it depends (with which it matched) may
be selected for execution from the same type queue. For
example, both a load instruction and an add instruction can be
selected for execution from any of the load queues. However,
a complex instruction cannot be selected for execution from
the load queues since a complex integer execution arbiter and
executionunit is not coupled to the load queues. If, at decision
diamond 2012, the match is not with the same-type queue, the
method proceed to block 1218. If, at decision diamond 1212,
the match is with the same-type queue, method 1200 proceeds
to decision diamond 1214 in which it is determined if more
than 1 match occurred. If not, then the currently decoded
instruction is only dependent on one other instruction, and the
method proceeds to block 1216 in which the currently
decoded instruction is saved to the dependent queue (the
queue which contains the instruction on which it depends). If,
at decision diamond 1214, the count match is greater than 1,
meaning that more than one match occurred, the method
proceeds to block 1220. In block 1220, the duplicate/tripli-
cate algorithm is used to save the instruction to multiple
dependent queues by using the duplicate bits. That is, as
described above in reference to the examples of FIGS. 6-13,
if an instruction is saved to two dependent queues, a single bit
location of duplicate free list 203 and the corresponding
single bit in the duplicate fields of the duplicate instructions
saved into the queues is used to keep track of the duplicate
instructions. Similarly, if an instruction is saved to three
dependent queues, 3 bit locations of duplicate free list 203
and the same corresponding 3 bit locations in the duplicate
fields of the triplicate instructions saved into the queues is
used to keep track of the triplicate instructions. As described
above, for each triplicate instruction, only 2 bits of the 3 bit
locations is asserted so that each of the three instructions has
adifferent 3 bit value. The duplicate fields are used to process
the instructions when they reach the bottom entry of a queue,
as was described above, until only one of the duplicate
instructions remains in the execution queue. It is the remain-
ing instruction which becomes a valid instruction which can
be selected for execution (e.g. the addc RC and add RF
instructions of FIG. 9 or the load RG instruction of FIG. 13).
Method 1100 then ends at end 1238.

Referring back to decision diamond 1222, if the match at
decision diamond 1222 was not with an other-type queue,
method 1200 proceeds to end 1238. However, if the match at
decision diamond 1222 occurred with an other-type queue,
then method 1200 proceeds to block 1226. For example, as
described above in reference to FIG. 12, a load instruction
(such as load RG) may include a dependency on a complex

10

15

20

25

30

35

40

45

50

55

60

65

20

integer instruction which is in an other-type queue. The other-
type queue refers to a queue which cannot be used for the
decoded instruction. For example, the complex integer queue
is an other-type queue for the load instruction since the load
instruction cannot be selected for execution from the complex
integer queue. At block 1226, a duplicate bit is assigned to the
sync instruction. That is, an available bit location of duplicate
free 1ist 203 is selected to keep track of a sync instruction. The
method proceeds to block 1228 in which the sync instruction
(which corresponds to the decoded issued instruction) is
saved in to the other-type queue, and the corresponding bit
location of the sync_duplicate field is set to a logic level 1.
Note that the actual instruction corresponding to the sync
instruction, i.e. the decoded instruction, is also saved to a
same-type queue either in block 1218, 1216, or block 1220
depending on whether matches exist with a same-type queue.
Method 1200 then proceeds to decision diamond 1230 in
which it is determined whether the decoded instruction
matches with another other-type queue. If not, then method
1200 proceeds to block 1236 in which the SYNC_PENDING
bit of PEND field 302 is set to a logic level 1 for the actual
instruction which was saved into a same-type queue. Also, the
1-HOT sync_duplicate bit is also set to a logic level 1. That s,
the corresponding bit location corresponding to the bit loca-
tion of duplicate free list selected in block 1226 in the sync_
duplicate field of the actual instruction is also set to a logic
level 1. For example, referring to the example of FIGS. 12 and
13, the actual load RG instruction is saved to two same-type
queues (queues 208 and 210) and a load sync dummy instruc-
tion is saved to the other-type queue (the complex integer
queue, in this example). Also, bit location 5 of sync_duplicate
fields 702 and 710 (and of the sync_duplicate field of the load
sync dummy instruction) are set to a logic level 1. The method
then ends at end 1238.

Referred to decision diamond 1230, if another match with
an other-type queue exists, method 1200 proceeds to decision
diamond 1232. If there are more than 3 matches with other-
type queues, method 1200 proceeds to block 1240 in which
the instruction is stalled and the method returns to block 1202.
If, at decision diamond 1232, the match count is 3 or less, then
method 1200 proceeds to block 1234 in which the duplicate/
triplicate algorithm is used to save a sync instruction to mul-
tiple dependent queues using the duplicate bits, similar to
what was described above with respect to block 1220. Note
also that the sync_duplicate fields of each of the duplicate or
triplicate sync instructions will be set accordingly as well. For
example, as described above with respect to the multiply
dummy sync instruction in FIG. 10 or the load RG instruction
in FIG. 12, those instructions which are dummy sync instruc-
tions or have a corresponding dummy sync instruction can be
duplicated or triplicated as well in which the sync_duplicate
fields are used to keep track of the syncing of instructions and
the duplicate fields are used to keep track of the instruction
duplication. The method then proceeds to block 1236,
described above.

FIG. 17 illustrates, in flow diagram form, a method 1300
for processing an instruction at a bottom entry of an execution
queue in accordance with one embodiment. Method 1300
begins with start 1302 and proceeds to decision diamond
1304 in which it s determined whether an instruction at a
bottom entry of an execution queue has a non-zero duplicate
field or sync field. If both fields are zeros (if both fields are
clear), then method 1300 proceeds to block 1306 in which the
instruction is a valid instruction read for selected for execu-
tion by an arbiter. In this case, note that any bit locations of
duplicate free list 203 which corresponded to the duplicate or
sync fields of this instruction will have been reset back to a

US 9,141,391 B2

21

logic level one. In this manner, note that an instruction is
ready for execution only after any bit locations of duplicate
free list 203 which corresponded to this instruction have been
reset to a logic level one. If either the duplicate field or sync
field is non-zero, then method 1300 proceeds from decision
diamond 1304 to decision diamond 1308 in which it is deter-
mined whether the instruction has a 1-HOT duplicate bit set
(whether the instruction has a non-zero duplicate field). If so,
then the duplicate instruction is processed and the method
proceeds to block 1310 in which the algorithm for clearing the
duplicate bit in other queues is followed, including collision
detection. For example, as described above with respect to the
Addc in FIG. 8, or the load RG in FIG. 12, the duplicate fields
are used to clear the corresponding bit in other duplicate fields
of instructions in other queues. Also, if the instruction at the
bottom entry of the execution queue is also stored in a bottom
entry of another of the execution queues, then the instruction
stored in the bottom entry of the execution queue which has
the lower priority is invalidated. That is, the instruction stored
in the bottom entry of the higher-order execution queue is the
one that is processed. At decision diamond 1308, if the dupli-
cate field is zero, method 1300 proceeds to decision diamond
1316 in which it is determined whether the instruction has a
1-HOT sync duplicate bit set. If not, the method ends at end
1320. However, if so, the method proceeds to block 1318 in
which the sync_duplicate field is used to clear the appropriate
bit locations in the sync_duplicate bits on other-type queues.
The method then proceeds to block 1312. Note that, in the
current embodiment, the check for a non-zero duplicate field
occurs prior to the check for a non-zero sync_duplicate field.
That is, in the current example, the duplicate field takes pre-
cedence and is processed prior to the sync_duplicate field.

At block 1312, the instruction is invalidated and the queue
entries are shifted down by 1. That is, an instruction at the
bottom entry of a queue with a non-zero duplicate field or
non-zero sync_duplicate field is not ready for selection for
execution and is thus invalidated and removed from the
queue. In the case of a non-zero duplicate field, there are 1 or
2 remaining instances of the instruction in another (same-
type) queue. In the case of a non-zero sync_duplicate field,
there is still 1 or 2 remaining instances of the actual instruc-
tion in either a same-type queue or other-type queue. For
example, queue 210 in the examples of FIGS. 8,10, and 12 all
provide examples of how instructions with non-zero dupli-
cate fields and/or non-zero sync_duplicate fields are invali-
dated and processed. Method 1300 then proceeds to decision
diamond 1314 in which it is determined whether the next
instruct also has a non-zero duplicate or sync_duplicate field.
If so, the method returns to decision diamond 1308 in which
this next instruction is processed as described above. If not,
the method ends at end 1320. Therefore, as in the examples of
queue 210 in FIGS. 8, 10, and 12, multiple instructions can be
invalidated and processed in a single cycle. Also, if at decision
diamond 1316, the instruction does not have a 1-HOT sync_
duplicate bit set, the method also ends at end 1320.

Therefore, by now it can be understood how a single dupli-
cate free list can be used to keep track of a variety of depen-
dencies and complexities present in various execution
queues. For example, a single duplicate free list can be used to
keep track of both duplicate and triplicate instructions,
dummy sync instructions, as well as status bit using or gen-
erating instructions. In this manner, additional data storage
can be avoided and increased instruction execution efficiency
may be achieved.

Note that the functionality of all or a portion of methods
1000,1100,1200, and 1300 may be executed by logic instruc-
tions executable by processor 102.

10

15

20

25

30

35

40

45

50

55

60

65

22

The terms “assert” or “set” and “negate” (or “deassert”, or
“clear”’) have been used herein when referring to the render-
ing of a signal, status bit, or similar apparatus into its logically
true or logically false state, respectively. If the logically true
state is a logic level one, the logically false state is a logic level
zero. And if the logically true state is a logic level zero, the
logically false state is a logic level one. Each signal described
herein may be designed as positive or negative logic, where
negative logic can be indicated by a bar over the signal name
or an asterix (*) following the name. In the case of a negative
logic signal, the signal is active low where the logically true
state corresponds to a logic level zero. In the case of a positive
logic signal, the signal is active high where the logically true
state corresponds to a logic level one. Note that any of the
signals described herein can be designed as either negative or
positive logic signals. Therefore, in alternate embodiments,
those signals described as positive logic signals may be
implemented as negative logic signals, and those signals
described as negative logic signals may be implemented as
positive logic signals.

Moreover, the terms “front,” “back,” “top,” “bottom,”
“over,” “under” and the like in the description and in the
claims, if any, are used for descriptive purposes and not nec-
essarily for describing permanent relative positions. It is
understood that the terms so used are interchangeable under
appropriate circumstances such that the embodiments of the
disclosure described herein are, for example, capable of
operation in other orientations than those illustrated or other-
wise described herein.

Some of the above embodiments, as applicable, may be
implemented using a variety of different information process-
ing systems. For example, although FIG. 1 and FIG. 2 and the
discussion thereof describe an exemplary information pro-
cessing architecture, this exemplary architecture is presented
merely to provide a useful reference in discussing various
aspects of the disclosure. Of course, the description of the
architecture has been simplified for purposes of discussion,
and it is just one of many different types of appropriate
architectures that may be used in accordance with the disclo-
sure. Those skilled in the art will recognize that the bound-
aries between logic blocks are merely illustrative and that
alternative embodiments may merge logic blocks or circuit
elements or impose an alternate decomposition of function-
ality upon various logic blocks or circuit elements.

Thus, it is to be understood that the architectures depicted
herein are merely exemplary, and that in fact many other
architectures can be implemented which achieve the same
functionality. In an abstract, but still definite sense, any
arrangement of components to achieve the same functionality
is effectively “associated” such that the desired functionality
is achieved. Hence, any two components herein combined to
achieve a particular functionality can be seen as “associated
with” each other such that the desired functionality is
achieved, irrespective of architectures or intermedial compo-
nents. Likewise, any two components so associated can also
be viewed as being “operably connected,” or “operably
coupled,” to each other to achieve the desired functionality.

Furthermore, those skilled in the art will recognize that
boundaries between the functionality of the above described
operations merely illustrative. The functionality of multiple
operations may be combined into a single operation, and/or
the functionality of a single operation may be distributed in
additional operations. Moreover, alternative embodiments
may include multiple instances of a particular operation, and
the order of operations may be altered in various other
embodiments.

US 9,141,391 B2

23

In one embodiment, system 100 is a computer system such
as a personal computer system. Other embodiments may
include different types of computer systems. Computer sys-
tems are information handling systems which can be
designed to give independent computing power to one or
more users. Computer systems may be found in many forms
including but not limited to mainframes, minicomputers,
servers, workstations, personal computers, notepads, per-
sonal digital assistants, electronic games, automotive and
other embedded systems, cell phones and various other wire-
less devices. A typical computer system includes at least one
processing unit, associated memory and a number of input/
output (I/O) devices.

Although the disclosure is described herein with reference
to specific embodiments, various modifications and changes
can be made without departing from the scope of the present
disclosure as set forth in the claims below. Accordingly, the
specification and figures are to be regarded in an illustrative
rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present dis-
closure. Any benefits, advantages, or solutions to problems
that are described herein with regard to specific embodiments
are not intended to be construed as a critical, required, or
essential feature or element of any or all the claims.

The term “coupled,” as used herein, is not intended to be
limited to a direct coupling or a mechanical coupling.
Furthermore, the terms “a” or “an,” as used herein, are
defined as one or more than one. Also, the use of introductory
phrases such as “at least one” and “one or more” in the claims
should not be construed to imply that the introduction of
another claim element by the indefinite articles “a” or “an”
limits any particular claim containing such introduced claim
element to disclosures containing only one such element,
even when the same claim includes the introductory phrases
“one or more” or “at least one” and indefinite articles such as
“a” or “an.” The same holds true for the use of definite articles.

Unless stated otherwise, terms such as “first” and “second”
are used to arbitrarily distinguish between the elements such
terms describe. Thus, these terms are not necessarily intended
to indicate temporal or other prioritization of such elements.

The following are various embodiments of the present
invention.

Item 1 includes, in a processor having an instruction unit, a
decode/issue unit, and execution queues configured to pro-
vide instructions to correspondingly different types execution
units, a method including maintaining a duplicate free list for
the execution queues, wherein the duplicate free list includes
a plurality of duplicate dependent instruction indicators that
indicate when a duplicate instruction for a dependent instruc-
tionis stored in at least one of the execution queues; assigning
one of the duplicate dependent instruction indicators to an
execution queue for a dependent instruction; and executing
the dependent instruction only when the one of the duplicate
dependent instruction indicators is reset. [tem 2 includes the
method of item 1, wherein a first set of the duplicate depen-
dent instruction indicators correspond to duplicate dependent
instruction indicators for instructions whose operands
depend on a result of another instruction, and a second set of
the duplicate dependent instruction indicators correspond to
duplicate synchronization instruction indicators for instruc-
tions whose operands depend on a result of another instruc-
tion of a different type, and the method further includes, when
the operands of a received instruction of a first type depend on
another instruction of a second type in one of the execution
queues, assigning one of the plurality of duplicate dependent
instruction indicators to the received instruction, and storing
a synchronization instruction and a duplicate synchronization

10

15

20

25

30

35

40

45

50

55

60

65

24

instruction indicator corresponding to the assigned duplicate
dependent instruction indicator in the one of the execution
queues of the second type. Item 3 includes the method of item
2 and further includes, when the operands of the received
instruction of the first type depend on the instruction of the
second type in one of the execution queues, if the operands of
the received instruction depend on a third instruction stored in
the execution queues, and the received instruction is a differ-
ent type than the third instruction: assigning one or more of
the plurality of duplicate dependent instruction indicators to
the received instruction; and storing a second synchronization
instruction, a second duplicate synchronization instruction
indicator, and a duplicate instruction indicator in one of the
execution queues that includes the third instruction, wherein
each of the second duplicate synchronization instruction indi-
cator and the duplicate instruction indicator correspond to the
assigned one or more duplicate dependent instruction indica-
tors. Item 4 includes the method of item 2, and further
includes, when the operands of the received instruction of the
first type depend on more than one instruction of the first type
in more than one of the execution queues, assigning one or
more of the plurality of duplicate dependent instruction indi-
cators to the received instruction, and storing the received
instruction and a duplicate instruction indicator correspond-
ing to the assigned one or more duplicate dependent instruc-
tion indicators in the execution queues that include the
instructions on which the operands of the received instruction
depend. Item 5 includes the method of item 2, and further
includes, if the operands do not depend on any instruction
stored in the execution queues, storing the received instruc-
tion in one of the execution queues that is characterized as an
independent execution queue. Item 6 includes the method of
item 2, and further includes, if a valid instruction stored in a
bottom entry of an execution queue includes a duplicate
instruction indicator that is set or a duplicate synchronization
instruction indicator that is set, if the duplicate instruction
indicator is set, sending a signal based on the duplicate
instruction indicator to clear duplicate instruction indicators
in other execution queues corresponding to the instruction
stored in the bottom entry, if the instruction stored in the
bottom entry of the execution queue is also stored in a bottom
entry of another one of the execution queues, invalidating the
instruction stored in the bottom entry of the execution queue
if the other one of the execution queues is a higher-order
execution queue than the execution queue, and shifting
entries in the execution queue down by one instruction. [tem
7 includes the method ofitem 6, and further includes, if a valid
instruction stored in a bottom entry of an execution queue
includes a duplicate instruction indicator that is set or a dupli-
cate synchronization instruction indicator that is set, if the
duplicate instruction indicator is not set, if the duplicate syn-
chronization instruction indicator is set, sending a signal
based on the duplicate synchronization instruction indicator
to clear duplicate synchronization instruction indicators in
other execution queues corresponding to the instruction
stored in the bottom entry, and shifting the entries in the
execution queue down by one instruction. Item 8 includes the
method of item 1, wherein a first set of the duplicate depen-
dent instruction indicators correspond to duplicate instruc-
tion indicators for instructions whose operands depend on a
result of another instruction, and a second set of the duplicate
dependent instruction indicators correspond to duplicate sta-
tus bit indicators for the instructions whose operands depend
on the result of the other instruction, and wherein the method
further includes, when a received instruction will update a
status bit, assigning one of the plurality of duplicate depen-
dent instruction indicators to the received instruction, storing

US 9,141,391 B2

25

the received instruction and a duplicate status bit indicator
corresponding to the assigned duplicate dependent instruc-
tion indicator to one of the execution queues, setting a status
pending indicator corresponding to the assigned duplicate
dependent instruction indicator, and setting a pending valid
indicator in the decode/issue unit. Item 9 includes the method
ofitem 8, and further includes, when the received instruction
will use the status bit, when the pending valid indicator is set
for the status pending indicator, assigning the status pending
indicator to the received instruction; storing the received
instruction and the assigned status pending indicator to one of
the execution queues; when the pending valid indicator is not
set for the status pending pointer, reading the status pending
indicator from a status register for the received instruction.
Item 10 includes the method of item 8, and further includes,
when an instruction is at a bottom entry of an execution queue
and selected for execution, when a status write pending indi-
cator is set, sending a signal based on a duplicate status bit
indicator for the instruction selected for execution to clear
duplicate status bit indicators for duplicate instructions in the
other execution queues, when the status bit indicators for the
duplicate instructions are cleared, resetting status pending
indicators for the duplicate instructions. Item 11 includes the
method of item 10, and further includes, when the instruction
at a bottom entry of an execution queue is selected for execu-
tion, when the status write pending indicator is set, sending
another signal based on the duplicate status bit indicator for
the instruction selected for execution to clear a bit in the status
pending indicator, when all bits in the status pending indicator
are cleared, resetting the pending valid indicator.

Item 12 includes a processing system including a process-
ing unit; an instruction unit; a decode/issue unit; execution
queues configured to provide instructions to correspondingly
different types execution units; and logic instructions oper-
able to maintain a duplicate free list for the execution queues,
wherein the duplicate free list includes a plurality of duplicate
dependent instruction indicators that indicate when a dupli-
cate instruction for a dependent instruction whose operands
depend on a result of another instruction is stored in at least
one of the execution queues; assign one of the duplicate
dependent instruction indicators to an execution queue for a
dependent instruction; and execute the dependent instruction
only when the one of the duplicate dependent instruction
indicators is reset. [tem 13 includes the processing system of
item 12, wherein a first set of the duplicate dependent instruc-
tion indicators corresponds to duplicate dependent instruc-
tion indicators for instructions whose operands depend on a
result of another instruction, and a second set of the duplicate
dependent instruction indicators correspond to duplicate syn-
chronization instruction indicators for instructions whose
operands depend on a result of another instruction of a dif-
ferent type, and wherein the processing system further
includes logic instructions operable to determine when the
operands of a received instruction of a first type depend on
another instruction of a second type in one of the execution
queues, assign one of the plurality of duplicate dependent
instruction indicators to the received instruction, and store a
synchronization instruction and a duplicate synchronization
instruction indicator corresponding to the assigned duplicate
dependent instruction indicator in the one of the execution
queues of the second type. Item 14 includes the processing
system of item 13, and further includes logic instructions
operable to determine when the operands of the received
instruction of the first type depend on the instruction of the
second type in one of the execution queues, determine if the
operands of the received instruction depend on a third instruc-
tion stored in the execution queues, and the received instruc-

30

40

45

50

26

tion is a different type than the third instruction: if the oper-
ands of'the received instruction depend on a third instruction
stored in the execution queues, and the received instruction is
a different type than the third instruction: assign one or more
of the plurality of duplicate dependent instruction indicators
to the received instruction; and store a second synchroniza-
tion instruction, a second duplicate synchronization instruc-
tion indicator, and a duplicate instruction indicator in one of
the execution queues that includes the third instruction,
wherein each of the second duplicate synchronization
instruction indicator and the duplicate instruction indicator
correspond to the assigned one or more duplicate dependent
instruction indicators. Item 15 includes the processing system
of'item 12, and further includes logic instructions operable to
if an instruction stored in a bottom entry of an execution
queue includes a duplicate instruction indicator that is set or
a duplicate synchronization instruction indicator that is set, if
the duplicate instruction indicator is set, send a signal based
on the duplicate instruction indicator to clear duplicate
instruction indicators in other execution queues correspond-
ing to the instruction stored in the bottom entry, if the instruc-
tion stored in the bottom entry of the execution queue is also
stored in a bottom entry of another one of the execution
queues, invalidate the instruction stored in the bottom entry of
the execution queue if the other one ofthe execution queues is
a higher-order execution queue than the execution queue, and
shift entries in the execution queue down by one instruction;
if the duplicate instruction indicator is not set, if the duplicate
synchronization instruction indicator is set, send a signal
based on the duplicate synchronization instruction indicator
to clear duplicate synchronization instruction indicators in
other execution queues corresponding to the instruction
stored in the bottom entry, and shift the entries in the execu-
tion queue down by one instruction. Item 16 includes the
processing system of item 12, wherein a first set of the dupli-
cate dependent instruction indicators correspond to duplicate
instruction indicators for instructions whose operands
depend on a result of another instruction, and a second set of
the duplicate dependent instruction indicators correspond to
duplicate status bit indicators for the instructions whose oper-
ands depend on the result of the other instruction, and wherein
the processing system further includes logic instructions
operable to determine that a received instruction will update
a status bit, assign one of the plurality of duplicate dependent
instruction indicators to the received instruction, store the
received instruction and a duplicate status bit indicator to one
of'the execution queues, and setting a status pending indicator
corresponding to the assigned duplicate dependent instruc-
tion indicator, and set a pending valid indicator in the decode/
issue unit. Item 17 includes the processing system of item 16,
and further includes logic instructions operable to determine
that the received instruction will use the status bit, when the
pending valid indicator is set for the status pending indicator,
assign the status pending indicator to the received instruction;
store the received instruction and the assigned status pending
indicator to one of the execution queues; when the pending
valid indicator is not set for the status pending pointer, read
the status pending indicator from a status register for the
received instruction. Item 18 includes the processing system
of'item 16, and further includes logic instructions operable to
determine when an instruction at a bottom entry of an execu-
tion queue is selected for execution, when a status write
pending indicator is set, send a signal based on a duplicate
status bit indicator for the instruction selected for execution to
clear duplicate status bit indicators for duplicate instructions
in the other execution queues, when the status bit indicators
for the duplicate instructions are cleared, clear status pending

US 9,141,391 B2

27

indicators for the duplicate instructions, send another signal
based on the duplicate status bit indicator for the instruction
selected for execution to clear a bit in the status pending
indicator, when all bits in the status pending indicator are
cleared, reset the pending valid indicator.

Ttem 19 includes a processing system including a process-
ing unit; an instruction unit; a decode/issue unit; execution
queues configured to provide instructions to correspondingly
different types execution units; a first set of the duplicate
dependent instruction indicators correspond to duplicate
instruction indicators for instructions whose operands
depend on a result of another instruction; and a second set of
the duplicate dependent instruction indicators correspond to
one of the group consisting of: duplicate status bit indicators
for the instructions whose operands depend on the result of
the other instruction, and duplicate synchronization instruc-
tion indicators for instructions whose operands depend on a
result of another instruction of a different type, and logic
instructions operable to determine when one of the duplicate
dependent instruction indicators in the first or second sets is
assigned to an execution queue for a dependent instruction,
the dependent instruction is executed only when the one of the
duplicate dependent instruction indicators is reset. Iltem 20
includes the processing system of claim 19, and further
includes logic instructions operable to determine when the
operands of a received instruction of a first type depend on
another instruction of a second type in one of the execution
queues, assign one of the plurality of duplicate dependent
instruction indicators to the received instruction, and store a
synchronization instruction and a duplicate synchronization
instruction indicator corresponding to the assigned duplicate
dependent instruction indicator in the one of the execution
queues of the second type; and logic instructions operable to
determine that a received instruction will update the status bit,
assign one of the plurality of duplicate dependent instruction
indicators to the received instruction, store the received
instruction and a duplicate status bit indicator corresponding
to the assigned duplicate dependent instruction indicator to
one of the execution queues, setting a status pending indicator
corresponding to the assigned duplicate dependent instruc-
tion indicator, and set a pending valid indicator in the decode/
issue unit.

What is claimed is:
1. In a processor having an instruction unit, a decode/issue
unit, and execution queues configured to provide instructions
to correspondingly different types execution units, a method
comprising:
maintaining a duplicate free list for the execution queues,
wherein the duplicate free list includes a plurality of
duplicate dependent instruction indicators that indicate
when a duplicate instruction for a dependent instruction
is stored in at least one of the execution queues;

assigning one of the duplicate dependent instruction indi-
cators to an execution queue for a dependent instruction;
and

executing the dependent instruction only when the one of

the duplicate dependent instruction indicators is reset.

2. The method of claim 1, wherein a first set of the duplicate
dependent instruction indicators correspond to duplicate
dependent instruction indicators for instructions whose oper-
ands depend on a result of another instruction, and a second
set of the duplicate dependent instruction indicators corre-
spond to duplicate synchronization instruction indicators for
instructions whose operands depend on a result of another
instruction of a different type, the method further comprising:

20

25

30

40

45

28

when the operands of a received instruction of a first type
depend on another instruction of a second type in one of
the execution queues,
assigning one of the plurality of duplicate dependent
instruction indicators to the received instruction, and
storing a synchronization instruction and a duplicate
synchronization instruction indicator corresponding
to the assigned duplicate dependent instruction indi-
cator in the one of the execution queues of the second
type.
3. The method of claim 2, further comprising:
when the operands of the received instruction of the first
type depend on the instruction of the second type in one
of the execution queues,
if the operands of the received instruction depend on a
third instruction stored in the execution queues, and
the received instruction is a different type than the
third instruction:
assigning one or more of the plurality of duplicate
dependent instruction indicators to the received
instruction; and
storing a second synchronization instruction, a sec-
ond duplicate synchronization instruction indica-
tor, and a duplicate instruction indicator in one of
the execution queues that includes the third instruc-
tion, wherein each of the second duplicate synchro-
nization instruction indicator and the duplicate
instruction indicator correspond to the assigned
one or more duplicate dependent instruction indi-
cators.
4. The method of claim 2, further comprising:
when the operands of the received instruction of the first
type depend on more than one instruction of the first type
in more than one of the execution queues,
assigning one or more of the plurality of duplicate
dependent instruction indicators to the received
instruction, and
storing the received instruction and a duplicate instruc-
tion indicator corresponding to the assigned one or
more duplicate dependent instruction indicators in the
execution queues that include the instructions on
which the operands of the received instruction
depend.
5. The method of claim 2, further comprising:
if the operands do not depend on any instruction stored in
the execution queues, storing the received instruction in
one of the execution queues that is characterized as an
independent execution queue.
6. The method of claim 2, further comprising:
if a valid instruction stored in a bottom entry of an execu-
tion queue includes a duplicate instruction indicator that
is set or a duplicate synchronization instruction indicator
that is set,
if the duplicate instruction indicator is set,
sending a signal based on the duplicate instruction
indicator to clear duplicate instruction indicators in
other execution queues corresponding to the
instruction stored in the bottom entry,
if the instruction stored in the bottom entry of the
execution queue is also stored in a bottom entry of
another one of the execution queues,
invalidating the instruction stored in the bottom
entry of the execution queue if the other one of
the execution queues is a higher-order execution
queue than the execution queue, and
shifting entries in the execution queue down by one
instruction.

US 9,141,391 B2

29

7. The method of claim 6, further comprising:
if a valid instruction stored in a bottom entry of an execu-
tion queue includes a duplicate instruction indicator that
is set or a duplicate synchronization instruction indicator
that is set,
if the duplicate instruction indicator is not set,
if the duplicate synchronization instruction indicator
is set,
sending a signal based on the duplicate synchroni-
zation instruction indicator to clear duplicate
synchronization instruction indicators in other
execution queues corresponding to the instruc-
tion stored in the bottom entry, and
shifting the entries in the execution queue down by
one instruction.

8. The method of claim 1, wherein a first set of the duplicate
dependent instruction indicators correspond to duplicate
instruction indicators for instructions whose operands
depend on a result of another instruction, and a second set of
the duplicate dependent instruction indicators correspond to
duplicate status bit indicators for the instructions whose oper-
ands depend on the result of the other instruction, the method
further comprising:

when a received instruction will update a status bit,

assigning one of the plurality of duplicate dependent
instruction indicators to the received instruction,
storing the received instruction and a duplicate status bit
indicator corresponding to the assigned duplicate
dependent instruction indicator to one of the execu-
tion queues,
setting a status pending indicator corresponding to the
assigned duplicate dependent instruction indicator,
and
setting a pending valid indicator in the decode/issue
unit.
9. The method of claim 8, further comprising:
when the received instruction will use the status bit,
when the pending valid indicator is set for the status
pending indicator,
assigning the status pending indicator to the received
instruction;
storing the received instruction and the assigned sta-
tus pending indicator to one of the execution
queues;
when the pending valid indicator is not set for the status
pending indicator,
reading the status pending indicator from a status
register for the received instruction.
10. The method of claim 8, further comprising:
when an instruction is at a bottom entry of an execution
queue and selected for execution,
when a status write pending indicator is set,
sending a signal based on a duplicate status bit indi-
cator for the instruction selected for execution to
clear duplicate status bit indicators for duplicate
instructions in the other execution queues,
when the status bit indicators for the duplicate instruc-
tions are cleared,
resetting status pending indicators for the duplicate
instructions.
11. The method of claim 10, further comprising:
when the instruction at a bottom entry of an execution
queue is selected for execution,
when the status write pending indicator is set,
sending another signal based on the duplicate status
bit indicator for the instruction selected for execu-
tion to clear a bit in the status pending indicator,

15

20

30

35

40

45

55

60

30

when all bits in the status pending indicator are
cleared,
resetting the pending valid indicator.
12. A processing system comprising:
a processing unit;
an instruction unit;
a decode/issue unit;
execution queues configured to provide instructions to cor-
respondingly different types execution units; and
logic instructions operable to
maintain a duplicate free list for the execution queues,
wherein the duplicate free list includes a plurality of
duplicate dependent instruction indicators that indi-
cate when a duplicate instruction for a dependent
instruction whose operands depend on a result of
another instruction is stored in at least one of the
execution queues;
assign one of the duplicate dependent instruction indi-
cators to an execution queue for a dependent instruc-
tion; and
execute the dependent instruction only when the one of
the duplicate dependent instruction indicators is reset.
13. The processing system of claim 12, wherein a first set of
the duplicate dependent instruction indicators corresponds to
duplicate dependent instruction indicators for instructions
whose operands depend on a result of another instruction, and
a second set of the duplicate dependent instruction indicators
correspond to duplicate synchronization instruction indica-
tors for instructions whose operands depend on a result of
another instruction of a different type, the processing system
further comprising:
logic instructions operable to
determine when the operands of a received instruction of
a first type depend on
another instruction of a second type in one of the
execution queues,
assign one of the plurality of duplicate dependent
instruction indicators to the received instruction,
and
store a synchronization instruction and a duplicate
synchronization instruction indicator correspond-
ing to the assigned duplicate dependent instruction
indicator in the one of the execution queues of the
second type.
14. The processing system of claim 13, further comprising:
logic instructions operable to determine when the operands
of the received instruction of the first type depend on the
instruction of the second type in one of the execution
queues,
determine if the operands of the received instruction
depend on a third instruction stored in the execution
queues, and the received instruction is a different type
than the third instruction:
if the operands of the received instruction depend on
a third instruction stored in the execution queues,
and the received instruction is a different type than
the third instruction:
assign one or more of the plurality of duplicate
dependent instruction indicators to the received
instruction; and
store a second synchronization instruction, a sec-
ond duplicate synchronization instruction indi-
cator, and a duplicate instruction indicator in one
of the execution queues that includes the third
instruction, wherein each of the second duplicate
synchronization instruction indicator and the

US 9,141,391 B2

31

duplicate instruction indicator correspond to the
assigned one or more duplicate dependent
instruction indicators.

15. The processing system of claim 12, further comprising:

logic instructions operable to if an instruction stored in a

bottom entry of an execution queue includes a duplicate
instruction indicator that is set or a duplicate synchroni-
zation instruction indicator that is set,
if the duplicate instruction indicator is set,
send a signal based on the duplicate instruction indi-
cator to clear duplicate instruction indicators in
other execution queues corresponding to the
instruction stored in the bottom entry,
if the instruction stored in the bottom entry of the
execution queue is also stored in a bottom entry of
another one of the execution queues,
invalidate the instruction stored in the bottom entry
of the execution queue if the other one of the
execution queues is a higher-order execution
queue than the execution queue, and
shift entries in the execution queue down by one
instruction;
if the duplicate instruction indicator is not set,
if the duplicate synchronization instruction indicator
is set for,
send a signal based on the duplicate synchroniza-
tion instruction indicator to clear duplicate syn-
chronization instruction indicators in other
execution queues corresponding to the instruc-
tion stored in the bottom entry, and
shift the entries in the execution queue down by one
instruction.

16. The processing system of claim 12, wherein a first set of
the duplicate dependent instruction indicators correspond to
duplicate instruction indicators for instructions whose oper-
ands depend on a result of another instruction, and a second
set of the duplicate dependent instruction indicators corre-
spond to duplicate status bit indicators for the instructions
whose operands depend on the result of the other instruction,
the processing system further comprising:

logic instructions operable to determine that a received

instruction will update a status bit,

20

25

30

35

40

32

assign one of the plurality of duplicate dependent
instruction indicators to the received instruction,
store the received instruction and a duplicate status bit
indicator to one of the execution queues, and
setting a status pending indicator corresponding to the
assigned duplicate dependent instruction indicator,
and
set a pending valid indicator in the decode/issue unit.
17. The processing system of claim 16, further comprising:
logic instructions operable to determine that the received
instruction will use the status bit,
when the pending valid indicator is set for the status
pending indicator,
assign the status pending indicator to the received
instruction;
store the received instruction and the assigned status
pending indicator to one of the execution queues;
when the pending valid indicator is not set for the status
pending pointer,
read the status pending indicator from a status register
for the received instruction.
18. The processing system of claim 16, further comprising:
logic instructions operable to determine when an instruc-
tion at a bottom entry of an execution queue is selected
for execution,
when a status write pending indicator is set,
send a signal based on a duplicate status bit indicator
for the instruction selected for execution to clear
duplicate status bit indicators for duplicate instruc-
tions in the other execution queues,
when the status bit indicators for the duplicate instruc-
tions are cleared,
clear status pending indicators for the duplicate
instructions,
send another signal based on the duplicate status bit
indicator for the instruction selected for execution
to clear a bit in the status pending indicator,
when all bits in the status pending indicator are
cleared,
reset the pending valid indicator.

#* #* #* #* #*

